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PART A
Answer any 10 (2 marks each)

1. Define orbits of a permuta�on.

2. How many different commuta�ve binary opera�ons can be defined on a set of  elements?

3.
Find the orbits of the permuta�on .

4. Define direct product of groups.

5. Show that if  is a ring, then for any . 

6. Find the number of homomorphism from  onto .

7. True or false: every skew field is a field. Jus�fy.

8. Find the quo�ent and reminder when  is divided by .

9. A cyclic group has a unique generator. True or false. Jus�fy.

10. Define homomorphism of groups.

11. Define division ring.

12. Show that the determinant func�on is a homomorphism on .

PART B
Answer any 5 (5 marks each)

13. Show that  defined on  by  makes  an abelian group.

14. Prove that the group homomorphism   is a one to one map if and only  if
Ker .

15. Show that if  is a prime, then  is a field.

16. Let  be a permuta�on of a set . Show that the rela�on defined, for  if
and only if   for some , is an equivalence rela�on. 

17. Show by an example that if   is not even an integral domain, it is s�ll possible for  to

be a field, where  is some ideal of .

18. Let  be a homomorphism. Show that if  is a subgroup of , then 

is a subgroup of .

19. Draw the subgroup diagram of  Klein  group.

20. Write all the elements of .

PART C
Answer any 3 (10 marks each)

21. Show that the commutator of group is a normal subgroup.  Show that if  is a normal
subgroup of , then  is abelian if and only if C ⊆ N.
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(10 x 3 = 30)

22. Show that a nonempty subset  of a group  is a subgroup of  if and only if

23. Prove that if , then the collec�on of all even permuta�ons of  forms

a subgroup of order  of the symmetric group .

24. Let  be a ring with . Prove that  is a commuta�ve ring. 

H G G
a ∈ H, ∀a, b ∈ Hb−1

n ≥ 2 {1, 2, 3, … , n}
n!/2 Sn

R = a, ∀a ∈ Ra2 R
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