

B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025**SEMESTER 5 : MATHEMATICS****COURSE : 19U5CRMAT7 : ALGEBRA***(For Regular 2023 Admission and Supplementary 2022/ 2021/ 2020/ 2019 Admissions)*

Time : Three Hours

Max. Marks: 75

PART A**Answer any 10 (2 marks each)**

1. Define orbits of a permutation.
2. How many different commutative binary operations can be defined on a set of n elements?
3. Find the orbits of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$.
4. Define direct product of groups.
5. Show that if R is a ring, then for any $a, b \in R$, $(-a)(-b) = ab$.
6. Find the number of homomorphism from \mathbb{Z}_n onto \mathbb{Z} .
7. True or false: every skew field is a field. Justify.
8. Find the quotient and remainder when -38 is divided by 7 .
9. A cyclic group has a unique generator. True or false. Justify.
10. Define homomorphism of groups.
11. Define division ring.
12. Show that the determinant function is a homomorphism on $GL(n, \mathbb{R})$.

(2 x 10 = 20)**PART B****Answer any 5 (5 marks each)**

13. Show that $*$ defined on \mathbb{Q}^+ by $a * b = ab/2$ makes \mathbb{Q}^+ an abelian group.
14. Prove that the group homomorphism $\phi : G \rightarrow G'$ is a one to one map if and only if $\text{Ker}(\phi) = \{e\}$.
15. Show that if p is a prime, then \mathbb{Z}_p is a field.
16. Let σ be a permutation of a set A . Show that the relation defined, for $a, b \in A$, aRb if and only if $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$, is an equivalence relation.
17. Show by an example that if R is not even an integral domain, it is still possible for R/N to be a field, where N is some ideal of R .
18. Let $\phi : G \rightarrow G'$ be a homomorphism. Show that if K' is a subgroup of G' , then $\phi^{-1}[K']$ is a subgroup of G .
19. Draw the subgroup diagram of Klein 4 group.
20. Write all the elements of D_4 .

(5 x 5 = 25)**PART C****Answer any 3 (10 marks each)**

21. Show that the commutator of group is a normal subgroup. Show that if N is a normal subgroup of G , then G/N is abelian if and only if $C \subseteq N$.

22. Show that a nonempty subset H of a group G is a subgroup of G if and only if $ab^{-1} \in H, \forall a, b \in H$
23. Prove that if $n \geq 2$, then the collection of all even permutations of $\{1, 2, 3, \dots, n\}$ forms a subgroup of order $n!/2$ of the symmetric group S_n .
24. Let R be a ring with $a^2 = a, \forall a \in R$. Prove that R is a commutative ring.

(10 x 3 = 30)