

B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025**SEMESTER 5 : COMPUTER APPLICATION****COURSE : 19U5CRCMT6 : MATHEMATICAL ANALYSIS***(For Regular 2023 Admission and Supplementary 2022/ 2021/ 2020/ 2019 Admissions)*

Time : Three Hours

Max. Marks: 75

PART A**Answer any 10 (2 marks each)**

- Find the inverse of $(-8 - i8\sqrt{3})$
- Give examples of sets which are (i) bounded (ii) unbounded.
- a) Define monotonic sequence with an example
b) Define Cauchy sequence.
- a) Define deleted neighbourhood of a point with an example.
b) Give an example of a set which is neither open nor closed.
- Find the multiplicative inverse of $2 + i\sqrt{3}$.
- Define the derived set of a set S. Obtain the derived set of the open interval (a,b).
- Find the infimum and supremum of the set $\{2 + \frac{1}{n}; n \in \mathbb{N}\}$.
- Find the limit inferior and limit superior of the sequence $\{a_n\}$ where $a_n = \sin \frac{n\pi}{3}; n \in \mathbb{N}$.
- Verify that $3+i3-i15+i110=2+i$.
- Show that the sequence $\{S_n\}$, where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ cannot converge.
- Show that $(0, 1)$ is open not closed
- Prove that a set cannot have more than one supremum.

(2 x 10 = 20)**PART B****Answer any 5 (5 marks each)**

- Show that the sequence $\{S_n\}$, where $S_n = (1 + \frac{1}{n})^n$, is convergent and that the $\lim (1 + \frac{1}{n})^n$ lies between 2 and 3.
- Prove that the intersection of any finite number of open sets is open.
- Show that if a set S is bounded then so is its closure \tilde{S} .
- Find the principal argument of
 - $\frac{i}{-2-2i}$
 - $(\sqrt{3} - i)^6$
- State and prove Cauchy's second theorem on limits.
- Prove that the order completeness property of real numbers implies Dedekind's property.
- Find $(1)^{1/6}$.
- Let $A, B \subseteq \mathbb{R}$ such that $A \subseteq B$. Show that $\text{Sup } A \leq \text{Sup } B$

(5 x 5 = 25)

PART C
Answer any 3 (10 marks each)

21. Prove that every infinite bounded set has a limit point
22. a) If $\{a_n\}$ be a sequence, such that $\lim \frac{a_{n+1}}{a_n} = l$, where $|l| < 1$, then prove that $\lim a_n = 0$.
b) Prove that a monotonic sequence is convergent if and only if it is bounded.
23. Prove that a sequence is convergent if and only if it is bounded and has a unique limitpoint.
24. (a) Show that the real number field is Archimedean.
(b) Prove that every open interval (a,b) contains a rational number.

(10 x 3 = 30)