

M.Sc. DEGREE END SEMESTER EXAMINATION - NOVEMBER 2025**SEMESTER 1 : MATHEMATICS****COURSE : 24P1MATT05 : OPTIMIZATION TECHNIQUES***(For Regular - 2025 Admission and Improvement/Supplementary 2024 Admission)*

Time : Three Hours

Max. Weights: 30

PART A**Answer any 8 questions****Weight: 1**

1. Define spanning Tree of a Graph. (U, CO 3)
2. What are the methods used to solve unconstrained non- linear programming problem ? (R, CO 1)
3. Explain fixed charge problem. (R, CO 2)
4. Explain Lagrange multipliers. (R, CO 4)
5. State sufficient and necessary condition for a function to be maximum. (R, CO 4)
6. Find the dual of the primal

$$\begin{aligned}
 \text{Minimize} \quad & 2x_1 + 3x_2 \\
 \text{subject to} \quad & 3x_1 + 45x_2 \leq 1 \\
 & 2x_1 + x_2 = 17 \\
 & 8x_1 + 2x_2 \geq 10 \\
 & x_1, x_2 \geq 0
 \end{aligned}
 \quad (A, CO 1)$$

7. Define graph and directed graph. (R, CO 3)
8. In a Branch-and-Bound problem, if $X_1 = 5$ and $X_2 = 3.7$, then which variable would be a possible branching option and how? (U, CO 2)
9. Explain a cut? (U, CO 3)
10. Define Simplex Multipliers (R, CO 1)

(1 x 8 = 8)

PART B**Answer any 6 questions****Weights: 2**

11. Minimize $f(x) = 3x_1^2 + x_2^2 + 2x_1x_2 + 6x_1 + 2x_2$ subject to $2x_1 - x_2 = 4$. (A, CO 4)
12. Describe the maximum flow algorithm. (U, CO 3)
13. Show that if $\{x_i\}$ and $\{y_i\}$ are two flows in a graph, then $\{ax_i + by_i\}$, where a and b are real constants, is also a flow. (U, CO 3)
14. Solve graphically,

$$\begin{aligned}
 \text{Maximize} \quad & z = x + 2y \\
 \text{subject to,} \quad & 3x + 2y \leq 9 \\
 & x \leq 2 \\
 & x, y \geq 0 \text{ and integers.}
 \end{aligned}
 \quad (U, CO 2)$$

15. Prove that the value of the objective function $f(X)$ for any feasible solution of the primal is not less than the value of the objective function $\phi(Y)$ for any feasible solution of dual. (U, CO 1)

16. Solve the following problem using cutting plane method

$$\begin{aligned}
 \text{Maximize} \quad & z = x_1 + x_2 \\
 \text{subject to} \quad & 2x_1 + 5x_2 \leq 16 \\
 & 6x_1 + 5x_2 \leq 30 \\
 & x_1, x_2 \geq 0
 \end{aligned} \tag{Cr}$$

17. Discuss Taylors series development in two dimensions and hence state the sufficient condition for minimum. (U, CO 4)

18. What can be concluded regarding the solution of the problem Max $f(x) = 3x_1 + 4x_2$ subject to $4x_1 + 3x_2 \geq 12, x_1 + 2x_2 \leq 2, x_1, x_2 \geq 0$. (A, CO 1)

(2 x 6 = 12)

PART C
Answer any 2 questions

Weights: 5

19. Describe 0 - 1 variable programming. (U, CO 2)

20. Use two phase method to solve
 $\text{Max } z = x_1 + x_2$ subject to
 $7x_1 - 6x_2 \leq 5,$
 $6x_1 + 3x_2 \geq 7$ (A, CO 1)
 $-3x_1 + 8x_2 \leq 6$
 x_1, x_2 are non negative .

21.

Find the minimum path from v_0 to v_8 in the graph in which the number along a directed arc denotes its length.

Arc	(0,1)	(1,4)	(4,7)	(7,4)	(0,2)	(0,3)	
Length	2	10	3	2	6	8	
Arc	(1,5)	(1,2)	(2,5)	(5,4)	(5,7)	(2,3)	(3,5)
Length	8	3	1	1	5	1	2
Arc	(3,6)	(6,7)	(7,6)	(6,8)	(7,8)		
Length	2	6	1	7	10		

(U, CO 3)

22. Solve the problem through classical Lagrangian technique.

(a) Minimize $f(x) = x_1^2 + x_2^2 - 4x_1 + 2x_2 + 5$ subject to $g(x) = x_1 + x_2 = 4$. (A, CO 4)

(b) Minimize $f(x) = (x_1 - 2)^2 + (x_2 - 1)^2$ subject to $g(x) = x_1 - 2x_2 + 1 = 0$. (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Apply simplex method to solve Linear Programming problem.	U	2, 6, 10, 15, 18, 20	12
CO 2	Evaluate optimal solution of ILPP by cutting plane and branch and bound method	A	3, 8, 14, 19	9
CO 3	Apply algorithm to find Goal programming, minimum path and maximum flow problem	A	1, 7, 9, 12, 13, 21	12
CO 4	Solve non linear problem with different algorithm	A	4, 5, 11, 17, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;