M. Sc. DEGREE END SEMESTER EXAMINATION - NOVEMBER 2025 SEMESTER 1 : MATHEMATICS

COURSE: 24P1MATT01: LINEAR ALGEBRA

(For Regular - 2025 Admission and Improvement/Supplementary 2024 Admission)

Time : Three Hours		Max. Weights: 30				
PART A						
Answer any 8 questions Weight: 1						
1.	Define annihilator of a subset S of a vector space V . What is the annihilator of $S=\{0\}$?	(U)				
2.	Define sign of a permutation	(R, CO 3)				
3.	Let D be a 2-linear function with the property that $D(A)=0$ for all $n imes n$ matrices A over K having equal rows. Show that D is alternating.	(A, CO 3)				
4.	Find three vectors in \mathbb{R}^3 which are linearly dependent, and are such that any two of them are linearly independent.	(An, CO 1)				
5.	Define alternating n -linear function.	(U, CO 3)				
6.	Define minimal polynomial for a linear operator T on a finite dimensional vector space V . State three properties which characterize the minimal polynomial.	or (U)				
7.	Is there a linear transformation T from R^3 into R^2 such that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1)$? Justify.	(U)				
8.	Describe the range and null space of the differentiation transformation defined on the vector space of polynomials of degree less than or equal to n .	(U)				
9.	If the characteristic polynomial of an operator is x^4-2x^2+1 , what are the possible candidates for its minimal polynomial? Justify.	(U)				
10.	Define a vector space. Is $\mathbb R$ a vector space over $\mathbb C$?	(U, CO 1) (1 x 8 = 8)				
	PART B					
	Answer any 6 questions	Weights: 2				
11.	Let T be a linear operator on \mathbb{R}^2 defined by $T(1,0)=(0,1)$ and $T(0,1)=(-1,0).$ Find the subspace of R^2 which is invariant under $T.$	(A)				
12.	Let V and W be finite-dimensional vector spaces over the field $\mathbb F$. Prove that V and W are isomorphic if and only if $dim V=dim W$	(A)				
13.	Let V be the vector space over the complex numbers of all functions from R into C , i.e., the space of all complex-valued functions on the real line. Let $f_1(x) = 1$, $f_2(x) = e^{ix}$, $f_3(x) = e^{-ix}$. Prove that f_1 , f_2 and f_3 are linearly	(1, 22,1)				
	independent.	(A, CO 1)				
14.		(A, CO 1)				
14. 15.	independent. If A and B are $n \times n$ matrices over the field F , show that trace (AB) = trace	(A)				
	independent. If A and B are $n\times n$ matrices over the field F , show that trace (AB) = trace (BA) . Hence show that similar matrices have the same trace. Let A be an $n\times n$ matrix over K . Prove that A is invertible over K if and only	(A)				
15.	independent. If A and B are $n\times n$ matrices over the field F , show that trace (AB) = trace (BA) . Hence show that similar matrices have the same trace. Let A be an $n\times n$ matrix over K . Prove that A is invertible over K if and only $\det A$ is invertible over K . Let V be a finite dimensional vector space over a field $\mathbb F$ and T be a linear operator on V . Prove that T is triangulable if and only if the minimal	(A) if (A, CO 3)				
15. 16.	independent. If A and B are $n\times n$ matrices over the field F , show that trace (AB) = trace (BA) . Hence show that similar matrices have the same trace. Let A be an $n\times n$ matrix over K . Prove that A is invertible over K if and only $\det A$ is invertible over K . Let V be a finite dimensional vector space over a field $\mathbb F$ and T be a linear operator on V . Prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over $\mathbb F$.	(A) if (A, CO 3) (A) (A, CO 3)				

1 of 2

PART C Answer any 2 questions

Let $A=[a_{ij}]\in M_9(\mathbb{R})$ be defined by $a_{ij}=1\,\,orall i,j.$ Find the characteristic and 19. (An)

minimal polynomials for A.

- 20. Let m and n be positive integers and let F be a field. Suppose W is a subspace of F^n and $dim\,W \leq m.$ Show that there is precisely one m imes n row reduced (An, CO 1) echelon matrix over F which has W as its row space.
- (a) Find the determinant of A^{10} where $A=egin{bmatrix}1&2&5\\0&-1&-25\\0&0&1\end{bmatrix}$. Justify your 21. (E, CO 3)

(b) Show that a linear combination of n-linear functions is n-linear.

(a) Define rank and nullity of a linear transformation. 22. (b) Let V be finite dimensional and T :V →W be a linear trasnformation. Prove (U) that Rank T + nullity T = dim V.

 $(5 \times 2 = 10)$

Weights: 5

OBE: Questions to Course Outcome Mapping

answer.

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1		Α	4, 10, 13, 18, 20	11
CO 3		An	2, 3, 5, 15, 17, 21	12

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;