(CO1, U) (CO3, U) (CO4, U) (CO5, U) (CO5, U) × 5 = 10)
(CO1, U) (CO3, U) (CO4, U) (CO5, U) (CO5, U)
(CO3, U) (CO4, U) (CO5, U) (CO5, U)
(CO3, U) (CO4, U) (CO5, U) (CO5, U)
(CO3, U) (CO4, U) (CO5, U) (CO5, U)
(CO4, U) (CO5, U) (CO5, U)
(CO5, U) (CO5, U)
(CO5, U)
(CO5, U)
,
O1, An)
, ,
CO1, An)
CO3, An)
(602 5)
(CO3, E)
CO4, An)
.,,
CO4, E)
CO5, An)
× 5 = 25)

propose two hedging strategies. (CO1, E)

14. Analyze drivers of seasonality in coastal/heritage destinations and design a demand-smoothing (CO5,An) calendar with actionable tactics.

 $(10 \times 1 = 10)$

PART D - Case Study

(Compulsory, 25 Marks – answer all parts)

Case Scenario: Mangrove Coast Biosphere – Tourism at the Water's Edge

Mangrove Coast Biosphere (MCB) is a coastal wetland in South India known for backwaters, mangrove forests, and turtle-nesting beaches. Visitor numbers have surged due to kayaking, birding, and cultural boat parades. A proposed "Blue-Green Circuit" plans stilted boardwalks, low-impact ecolodges, community-owned homestays, and guided night safaris. A river-adjacent cruise terminal is also under consideration by the port authority. Impacts are emerging: bank erosion near popular jetties, plastic litter from picnic traffic, wildlife disturbance at nesting sites, and dry-season water stress. Fishing communities fear restricted access and cultural dilution; youth out-migration remains high due to seasonal jobs. The state proposes zoning, visitor caps via permits, a green tax, decentralized waste MRFs, and a skills academy with industry partners.

Questions:

- 15. (a). Identify the key environmental and socio-cultural impacts of tourism visible in MCB. (CO5, U)
 - (b). Propose planning measures (zoning, carrying capacity, infra, governance) to address the issues without harming livelihoods. (CO4, A)
 - (c). Using motivators—adventure, leisure, culture—design three micro-itineraries for different segments and justify the fit. (CO3, An)
 - (d). Evaluate the economic benefits and drawbacks (jobs, MSMEs, price inflation, leakages, seasonality) for local households. (CO5, E)
 - (e). Suggest a sustainable tourism strategy that integrates eco-tourism and community participation (ownership model, benefit-sharing, monitoring KPIs). (CO4, C)

CO – Question Mapping

 $(1 \times 25 = 25)$

Part	Q. No	СО	Cognitive Level
A	1	CO1	Understand (U)
A	2	CO3	Understand (U)
A	3	CO4	Understand (U)
A	4–5	CO5	Understand (U)
В	6–7	CO1	Analyse (An)
В	8–9	CO3	Analyse/Evaluate
В	10–11	CO4	Analyse/Evaluate
В	12	CO5	Analyse (An)
С	13	CO1	Evaluate (E)
С	14	CO5	Analyse (An)

Part	Q. No	CO	Cognitive Level 25FYU375
D	15(a)	CO5	Understand (U)
D	15(b)	CO4	Apply (A)
D	15(c)	CO3	Analyse (An)
D	15(d)	CO5	Evaluate (E)
D	15(e)	CO4	Create (C)