B.Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025

SEMESTER 3: COMPUTER APPLICATIONS

COURSE: 19U3CRCMT3: CALCULUS

(For Improvement/Supplementary 2023/2022/2021/2020/2019 Admissions)

Time: Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Evaluate the integral $\int_0^{\frac{\pi}{3}} \frac{\tan\theta \, d\theta}{\sqrt{2 \sec\theta}}$.
- 2. Use the chain rule to find the derivative of $w=x^2+y^2$ with respect to t along the path x = cos t , y = sin t.What is the derivative's value at $t=\pi$.
- 3. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x,y) = \tan^{-1}(\frac{y}{x})$.
- 4. Find the radius of curvature at the point θ on the curve $x=a(\theta-\sin\theta)$, $y=a(1-\cos\theta)$.
- 5. Evaluate $\iint_R \ xy \ dx \ dy$, where R is the region $x^2+y^2 \leq a^2, \ x \geq 0, \ y \geq 0.$
- 6. Expand In (x+a) in powers of x, using Tayor's series.
- $^{7.}$ Find $f_x,\ f_y\ and\ f_z\ if\ f\Bigl(x,\ y,\ z\Bigr)=e^{-\left(x^2+y^2+z^2
 ight)}.$
- 8. If $y = e^{a \sin^{-1} x}$, prove that $\left(1 x^2\right) y_2 x y_1 a^2 y = 0$.
- 9. Find the Jacobian J(u,v) for the transformation $x = u \cos v$, $y = u \sin v$.
- 10. The region between the curve y=2 \sqrt{x} , $0 \le x \le 2$ and the x-axis is revolved about the x-axis to generate a solid. Find its volume using Disk method.
- 11. Find the length of the curve $x=\cos^3 t,\ y=\sin^3 t,\ \ 0\leq t\leq 2\pi.$
- 12. Evaluate $\iint_R y \, dy \, dx$, where R is the region bounded by the parabolas $y^2 = 4x \ and \ x^2 = \ 4y$.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Find the centre of curvature of the curve $x=a\,\cos^3\theta,\ y=\,a\,\sin^3\theta.$
- 14. Find the ranges of values of x for which the curve $y=x^4-6x^3+12x^2+5x+7$ is concave upwards or downwards. Also determine the points of inflection and the inflectional tangents to the curves.
- 15. Find by double integration, the area of the region enclosed by the lemniscate $r^2=a^2\cos\,2\theta$.
- 16. Evaluate the cylindrical co-ordinate integral $\int_0^{2\pi} \int_0^1 \int_r^{1/\sqrt{2-r^2}} \ 3 \ dz \ r dr \ d\theta$.
- 17. Find the length of the curve y = log sec x between points given by x = 0 and x = $\frac{\pi}{3}$
- 18. Find all local maxima, local minima and saddle points of the function $f(x,y)=x^2+xy+y^2+3x-3y+4$.
- 19. The region bounded by the curve $y=\sqrt{4x-x^2}$, the x-axis and the line x=2 is revolved about x-axis to generate a solid. Find the volume of the solid by shell method.
- 20. If $u = \sin^{-1}\left(\frac{x-y}{x+y}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$.

 $(5 \times 5 = 25)$

PART C

Answer any 3 (10 marks each)

- 21. a) Find the surface area of the cone frustrum generated by revolving the line segment $y=\frac{x}{2}+\frac{1}{2},\ 1\leq x\leq 3,$ about the x-axis.
 - b) Using washer method, find the volume of the solid generated by revolving the region in the first quadrant bounded by the circle $x^2+y^2=3$ and the lines $x=\sqrt{3}$ and $y=\sqrt{3}$ about y-axis.
- 22. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 23. Find the volume of the region bounded below by the plane z = 0, laterally by the cylinder $x^2+y^2=1$ and above by the paraboloid $z=x^2+y^2$.
- 24. Using Lagrange multipliers, find the minimum value of x+y, subject to the constraints xy=16, x>0, y>0.

 $(10 \times 3 = 30)$