B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025

SEMESTER - 3: MATHEMATICS

(CORE COURSE FOR B. Sc. MATHEMATICS AND B. Sc. COMPUTER APPLICATIONS)

COURSE: 15U3CRMAT3-15U3CRCMT3: CALCULUS

(For Supplementary (Mercy Chance) 2018/2017/2016/2015 Admissions)

Time: Three Hours Max Marks: 75

PART A

Answer all questions. Each question carries 1 mark

- 1. Expand $\log (a + x)$ by Taylor's theorem
- 2. Find the nth derivative of sin (ax+b)
- 3. Define envelope of a one parameter of family of curves.
- 4. Find the critical points of f(x,y)=xy
- 5. Define critical point of a function f(x, y).
- 6. Evaluate $\int_0^3 \int_0^2 (4 y^2) \, dy \, dx$
- 7. Write surface area formula for revolution about y axis.
- 8. Find the area of the region enclosed by $x = 2y^2$, x = 0 and y = 3.
- 9. Find the area of the region R bounded by y = x and $y = x^2$ in the first quadrant using double integrals.
- 10. Find a spherical coordinate equation for the cone $z = \sqrt{(x^2 + y^2)}$.

 $(1 \times 10 = 10)$

PART B

Answer any eight questions. Each question carries 2 mark

- 11. Find the radius of curvature of the cycloid x = a (t + sint), y = a (1 cost).
- 12. Find the envelope of $\frac{x}{a} + \frac{y}{a-a} = 1$, where a is a constant
- 13. Find all second order partial differential equation of the function f(x, y) = x + y + xy.
- 14. Draw a tree diagram for the chain rule for functions of 3 variables
- 15. Find the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$.
- 16. Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 4.
- 17. Find the area of surface of the region generated by revolving the curve $x = y^3/3$, $0 \le y \le 1$ about x axis.
- 18. Verify that $w_{xy} = w_{yx}$ for $w = \ln(2x + 3y)$.
- 19. Find a spherical co-ordinate equation for the cone $z = \sqrt{x^2 + y^2}$
- 20. Reverse the order of integration, and evaluate the integral $\int_0^\pi \int_x^\pi \frac{\sin y}{y} dy dx$.

 $(2 \times 8 = 16)$

PART C

Answer any five questions. Each question carries 5 mark

- 21. Prove that $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \cdots$
- 22. Find the points of inflexion on the curve $y = (\log x)^3$.
- 23. Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y x^2 y^2$ on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, y = 9 x.
- 24. Find the area between the curves $x + y^2 = 0$ and $x + 3y^2 = 2$
- 25. Find the volume of the solid generated by the region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the x axis.
- 26. Find the area of the surface generated by revolving the curve $y=2\sqrt{x}$, $1 \le x \le 2$ about the x axis.
- 27. If w=tan⁻¹ $\frac{x}{y}$, x=ucosv, y=usinv find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$

 $(5 \times 5 = 25)$

PART D

Answer any two questions. Each question carries 12 mark.

- 28. Find the n^{th} derivative of $y = cos(m sin^{-1}x)$ for x = 0.
- 29. Find the centroid ($\delta = 1$) of the solid enclosed by the cylinder $x^2 + y^2 = 4$ bounded above by the paraboloid $z = x^2 + y^2$ and bounded below by the *xy*-plane.
- 30. Find the absolute maximum and minimum values of $f(x,y) = 2x^2-4x+y^2-4y+1$ on the closed region in the first quadrant bounded by x=0,y=2,y=2x
- 31. a) The region bounded by the curve $y = x^2$, the line y = 2 x and the y-axis for $x \ge 0$ is revolved about the y-axis to generate a solid. Find the volume of the solid using shell method
 - b) Find the length of the curve $y = \frac{1}{3} (x^2 + 3)^{3/2}$ from x=0 to x=3

 $(12 \times 2 = 24)$
