Reg. No	Name	25P323
1eg. NO	Name	23 F

M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025 **SEMESTER 3: PHYSICS**

COURSE: 24P3PHYT10: COMPUTATIONAL PHYSICS

(For Regular - 2024 Admission)

Time: Three Hours Max. Weights: 30

PART A

	Answer any 8 questions	Weight: 1
1.	Differentiate between partial and full pivoting	(U)
2.	Write a short note trapezoidal rule of integration.	(U)
3.	What are the advantages of Monte Carlo integration over the other usual Numerical integration schemes.	(U)
4.	Differentiate between Absolute and Relative errors.	(U)
5.	How can one numerically obtain the largest Eigen value of a matrix and its corresponding Eigen vector.	(U)
6.	Interpolate the missing entries: (x,y):: (0,0) ,(1,), (2,8), (3,15), (4,), (5,35)	(A)
7.	How does Monte Carlo integration works	(U)
8.	Differentiate Euler and modified Euler method	(U)
9.	Discuss truncation and rounding off errors in Numerical differentiation.	(U)
10.	Evaluate $\Delta^2((5x+2)/(x^2+5x+6))$ taking 1 as the interval of differencing.	(A) (1 x 8 = 8)
	PART B	
	PART B Answer any 6 questions	Weights: 2
11.		Weights: 2
11. 12.	Answer any 6 questions Is the ODE (x" + 11 x'+24 x = 33 t) – stable? Give proper justification. Solve the following initial boundary value problem using an explicit finite difference method:	_
	Answer any 6 questions Is the ODE $(x'' + 11 \ x' + 24 \ x = 33 \ t)$ – stable? Give proper justification. Solve the following initial boundary value problem using	_
	Answer any 6 questions Is the ODE (x" + 11 x'+24 x = 33 t) – stable? Give proper justification. Solve the following initial boundary value problem using an explicit finite difference method: $T_t = T_x x$, $0 <= x <= 1$, Given $T = \sin(\pi x)$ when $t = 0$, $0 <= x <= 1$ and	(A)
12.	Answer any 6 questions Is the ODE (x" + 11 x'+24 x = 33 t) – stable? Give proper justification. Solve the following initial boundary value problem using an explicit finite difference method: $T_{-}t = T_{-}xx$, 0<=x<=1, Given T= sin(πx) when t=0, 0<=x<=1 and T=0 at x=0 and x=1 for t>0 Using Power Method, find the dominant Eigen value and the	(A)
12.	Answer any 6 questions Is the ODE (x" + 11 x'+24 x = 33 t) – stable? Give proper justification. Solve the following initial boundary value problem using an explicit finite difference method: $T_{-}t = T_{-}xx$, $0 <= x <= 1$, Given $T = \sin(\pi x)$ when $t = 0$, $0 <= x <= 1$ and $t = 0$ at $t = 0$ and $t = 0$. Using Power Method, find the dominant Eigen value and the corresponding Eigen vector of the following matrix:	(A)

1 of 2 29-09-2025, 23:09

Integrate the function $f(x)=sqrt(1+x^2)$ within the limit 1 to 5 using

(U)

(A)

16.

integration.

Trapezoidal rule

Following are the population of a district. Find the population for the year 1911

18. The following values are taken from the table of cubes

Find (6.15)³

 $(2 \times 6 = 12)$

PART C Answer any 2 questions

rswer any 2 questions Weights: 5

19. Discuss Newton's divided difference formula. Write down the expression for the leading error term observed in this formula.

(A)

20. Discuss the Crank-Nicholson method of solving 1 dimensional diffusion equation.

(U)

(A)

21. Discuss Gauss Jordan method to find inverse of a matrix.

(U) (U)

22. Discuss Trapezoidal method and error associated with it.

 $(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.	
----	----------------------------	----	-----------	-----------	--

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

2 of 2