M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025

SEMESTER 3: MATHEMATICS

COURSE: 24P3MATT13: ADVANCED TOPOLOGY

(For Regular - 2024 Admission)

Time :	Time : Three Hours Max						
PART A							
	Answer any 8 questions	Weight: 1					
1.	Prove that the evaluation function of a family of functions $\{f_i\}$ is continuous if each f_i is continuous.	(U, CO 2)					
2.	State Embedding Lemma.	(R, CO 2)					
3.	Define a subnet of a net S in X .	(R, CO 3)					
4.	Prove that T_0 - axiom is a productive property.	()					
5.	Define a filter on a set X .	(R, CO 3)					
6.	Let S be a sub-base for a topological space X . Prove that if X is completely regular, then for each $V \in S$ and for each $x \in V$, there exist a continuous function $f: X \to [0,1]$ such that $f(x)=0$ and $f(y)=1$ for all $y \not\in V$.	()					
7.	Prove that T_2 axiom is a productive property.	()					
8.	Define a filter on a set X .	(R, CO 3)					
9.	Define one point compactification of the space (X,T) .	(U, CO 4)					
10.	In a second countable space prove that countable compactness implies compactness	(A, CO 4)					
		$(1 \times 8 = 8)$					
	PART B						
	Answer any 6 questions	Weights: 2					
11.	Let $f_1,f_2,f_3:\mathbb{R} o\mathbb{R}$ be defined by $f_1(x)=\cos x,f_2(x)=\sin x,$ $f_3(x)=x$ for $x\in\mathbb{R}.$ Describe the evaluation maps of the families $\{f_1,f_2\};\{f_1,f_3\}$ and $\{f_1,f_2,f_3\}.$ Which of these families distinguish points?	(A, CO 2)					
12.	If a space is second countable and T_3 , prove that it is embeddable in the Hilbert cube.	(U, CO 2)					
13.	Let X be the topological product of an indexed family of spaces, $\{X_i; i \in I\}$. Let $\mathcal F$ be a filter on X and let $x \in X$. Prove that $\mathcal F$ converges to x in X iff for each $i \in I$, the image filter, $\pi_{i_\#}(\mathcal F)$ converges to $\pi_i(x)$ in X_i .	(A, CO 3)					
14.	Let $ au$ be the product topology on the set πX_i where $\{(X_i, au_i); i \in I\}$ is an indexed collection of topological spaces. Prove that the family of all subsets of the form $\pi_i^{-1}(V_i)$ for $V_i \in au_i, i \in I$, is a sub-base for $ au$. Also prove that the family of all large boxes all of whose sides are open in the respective spaces, is a base for $ au$.	()					
15.	Prove that a metric space is compact if it is countably compact.	(U, CO 4)					
16.	Let X,Y be sets, $f:X\to Y$, a function and $\mathcal F$ a filter on X . Prove that the family $f(\mathcal F)=\{f(A)/A\in\mathcal F\}$ is a base for a filter on Y . Define the image filter of $\mathcal F$ under f .	(A, CO 3)					

1 of 2

Suppose a topological space X has the property that for every closed 17. subset A of X, every continuous real valued function on A has a () continuous extension to X. Then prove that X is normal. 18. If X is Hausdorff and locally compact at a point x in X, prove that the (U, CO 4) family of compact neighbourhood of x is a local base at x. $(2 \times 6 = 12)$ PART C Weights: 5 **Answer any 2 questions** 19. State and prove Tietze extension theorems. (U, CO 1) 20. Define an ultra filter on a set X and prove that every filter is contained in an (U, CO 3) ultra filter. Let (X^+, au^+) be one point compactification of the space (X, au). Prove that 21. (i) au^+/X is the topology au on X (ii) The space (X^+, au^+) is compact (iii) X(A, CO 4) is dense in X^+ iff X is not compact. State and prove Urysohn Embedding Theorem. 22. (U, CO 2)

 $(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1		U	19	5
CO 2		U	1, 2, 11, 12, 22	11
CO 3		U	3, 5, 8, 13, 16, 20	14
CO 4		Α	9, 10, 15, 18, 21	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

2 of 2