Reg.	No	Name	25P332
------	----	------	--------

M.Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025

SEMESTER – 3: CHEMISTRY/PHARMACEUTICAL CHEMISTRY

COURSE: 24P3CHET11/24P3CPHT11 - PHYSICAL CHEMISTRY III

(Regular 2024 Admission)

Time	e: Three Hours Ma	x. Weights: 30			
	PART A				
	Answer any 8 questions	Weights: 1			
1.	B-Galactosidase enzyme catalyzed hydrolysis of Lactose at 298 K has Michaelis				
	constant of 0.065 mol L ⁻¹ . At a substrate concentration of 0.75 mol L ⁻¹ , the reaction	(U, CO2)			
	rate is found to be 3.15 mol L ⁻ 1S ⁻¹ . Calculate the maximum Velocity.				
2.	Explain the principle of flash photolysis.	(U, CO1)			
3.	What is Goldfinger-Letort- Niclause rule?	(U, CO1)			
4.	Explain the influence of pressure on unimolecular gas phase reactions.	(U, CO1)			
5.	Write a note on micelles.	(U, CO 2)			
6.	What is the principle of Auger electron spectroscopy?	(U, CO 2)			
7.	Explain the adsorption isotherm of physisorption using Langmuir				
	adsorption isotherm.	(U, CO 2)			
8.	Calculate the ionic strength of a solution which is 0.1 molal in NaCl and				
	0.01 molal in CaCl ₂ .	(U, CO1)			
9.	Describe about Debye-Falkenhagen effect.	(U, CO1)			
10.	Write a note on deviations from DHLL.	(U, CO1)			
		(1 x 8 = 8)			
	PART B				
	Answer any 6 questions.	Weights: 2			
11.	Discuss the first and second explosion limits in H ₂ -O ₂ reaction.	(U, CO1)			
12.	Write a note on Eley-Rideal mechanism.	(U, CO1)			
13.	Explain the origin of Donnan membrane equilibrium. How does				
	it interfere with the determination of molecular mass of macromolecules?	(U, CO2)			
14.	Equal masses of polymer molecules with M1=10000 and M2= 100000 are mixed.				
	Calculate the number average molecular mass and weight average molecular mass.	. (U, CO2)			

	25P332			
15. For a unimolecular gas reaction, the pre-exponential term is				
3.7 x 1011 dm3/mol/s at 300K. Calculate the entropy of activation. What would				
be the change in entropy of activation if the unit of the pre-exponential factor	(U, CO1)			
was converted from dm3/mol/s to cm3/molecule/s.				
16. Explain about the principle and applications of SERS in surface chemistry.	(U, CO1)			
17. Write a note on ion - association.	(U, CO3)			
18. Briefly describe about Drude and Nernst's electrostriction model.	(U, CO3)			
	(2 x 6 = 12)			
PART C				
Answer any 2 questions	Weights: 5			
19. a) Distinguish between primary and secondary salt effect				
13. a) Distinguish between primary and secondary said effect				
b) Explain the influence of solvent on reaction rates	(U, CO1)			
	(U, CO1)			
b) Explain the influence of solvent on reaction rates	(U, CO1) (U, CO2)			
b) Explain the influence of solvent on reaction rates20. Derive BET theory of multilayer adsorption. How BET theory is used for the	, , ,			
b) Explain the influence of solvent on reaction rates20. Derive BET theory of multilayer adsorption. How BET theory is used for the determination of surface area of adsorbent.	(U, CO2)			

(5 x 2 = 10)