MSc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2017 SEMESTER 1 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY COURSE : 16P1CHET04 / 16P1CPHT04 - QUANTUM CHEMISTRY AND GROUP THEORY (Common for Regular - 2017 / Supplementary - 2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (2 marks each)

1. A reducible representation of C_{3v} point group is given below.

C3v	E	2C ₃	3σ _v
Τ _R	4	-1	0

Split this representation into the component irreducible representations

- 2. The sigma bonds are used as basis vectors for generating the reducible representation to understand the bonding properties of a molecule. Explain
- 3. Comment on the complimentarity of the IR and Raman activity of the vibrational modes of a molecule that belong to C2h point group
- 4. List the symmetry elements and operations of chloroform molecule. What is its point group?
- 5. Write the multiplication table for C_3 point group? What type of point group is it?
- 6. What are the properties of Abelian groups? Explain with one example
- 7. What are eigen functions and eigen values. Give example.
- 8. Calculate the uncertainty in position of an electron moving with a velocity of $2 \times 10^6 \text{ ms}^{-1}$, accurate upto 0.001 %.
- 9. Discuss the physical origin of quantisation of energy for a particle confined to move around a ring.
- 10. Explain the term degeneracy. What is the maximum degeneracy possible for a particle in a cube?
- 11. Zero point energy of a rigid rotator is zero. Is this against the uncertainty principle?
- 12. The n =1 to n = 2 absorption frequency for a certain particle in a certain onedimensional box is 6.0×10^{12} s⁻¹. Find the n =2 to n = 3 absorption frequency for this system.
- 13. Calculate the average distance of the electron from the nucleus in the ground state of hydrogen atom, given that the normalized ground state wave function is $\Psi_{1s} = (1/\pi a_0^{-3})^{\frac{1}{2}} \exp(-r/a_0)$

17P146

Section B Answer any 5 (5 marks each)

- 14. Determine the symmetries of the vibrational modes of trans-N₂F₂ molecules using internal co-ordinates
- 15. What are internal co-ordinates? Explain its application in determining the symmetries of the vibrational modes of ammonia molecule
- 16. Derive the part 1 and 2 of the character table for C_{3v} point group
- 17. The operations of a point group are {E, $2C_4(z)$, C2, $2C_2'$, $2C_2''$, i, $2S_4$, $2\sigma_v$, $2\sigma_d$ }. Identify the point group, order of the group. How many irreducible representations does it have? Can C_{4v} point group be a subgroup?
- 18. Show that Schrodinger wave equation is an Eigenvalue equation
- 19. Prove that $[L^2, L_x] = 0$.
- 20. The force constant of ⁷⁹Br⁷⁹Br is 240 Nm⁻¹. Calculate the fundamental vibrational frequency and zero-point energy of Br-Br, approximating the molecular vibration as that of a harmonic oscillator.
- 21. Discuss the radial and angular Schrodinger equation of hydrogen atom depend on the variables r, θ , ϕ and its solutions

(5 x 5 = 25)

Section C Answer any 2 (15 marks each)

- 22. Determine the symmetries of the vibrational modes of ammonia molecule and predict the IR and Raman acitivity based on the selection rules.
- 23. What are character tables? State the theorem concerning the irreducible representations of a group. And use the theorem to derive the character table for C_{2v} point group.
- 24. Solve the Schrödinger equation for a rigid rotator. Discuss the results.
- 25. With the help of diagrams, explain the radial wave function, radial probability density and radial probability distribution function of orbitals corresponds to R_{1,0}, R_{2,0}, R_{3,0}, R_{2,1}, R_{3,1}, R_{3,2} hydrogen wave functions.

(15 x 2 = 30)