M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025

SEMESTER 3: MATHEMATICS

COURSE: 24P3MATT14: ADVANCED COMPLEX ANALYSIS

(For Regular - 2024 Admission)

Duration : Three Hours		Max. Weights: 30				
	PART A					
	Answer any 8 questions	Weight: 1				
1.	State Schwarz reflection principle.	(R)				
2.	State Mittag-Leffler's theorem.	(R)				
3.	State Hadamard factorization theorem.	(E)				
4.	Find the order of the functions $a)\sin(z)$ $b)cosh\sqrt{z}$	(A)				
5.	State Bohr- Mollerup theorem by defining the Gamma function.	(An)				
6.	State a new version of Cauchy's Integral formula.	(R)				
7.	State Riemann Mapping Theorem.	(U)				
8.	Find the order of $f(z)=e^{e^z}$	(A)				
9.	If f(z) and if(z) are analytic in a region D, then show that f(z) is constant that region	(A)				
10.	Show that C and $D=\{z: z <1\}$ are homeomorphic by defining a homoemorphism.	(A)				
	·	$(1 \times 8 = 8)$				
PART B						
	Answer any 6 questions	Weights: 2				
11.	Let $Rez_n\geq 0$ for all $n\geq 1$. Then show that $\prod_{k=1}^\infty z_n$ converges to a non zero number iff the series $\sum_{n=1}^\infty logz_n$ converges.	(An)				
12.	State and prove the Weierstrass factorization theorem.	(U)				
13.	Let f be an analytic function on a region containing $B(\bar{0},r)$ and suppose that a_1,\ldots,a_n are the zeros of f in $B(0;r)$ repeated according to multiplicity. If $f(0) \neq 0$ then	(R)				
	$\log f(0) = -\sum_{k=1}^n \log \left(rac{r}{ a_k } ight) + rac{1}{2\pi} \int_0^{2\pi} \log f(re^{i heta} d heta)$	(,				
14.	Let G be an open connected subset of C . If for any f in $H(G)$ such that $f(z) \neq 0$ for all z in G there is a function g in $H(G)$ such that $f(z) = [g(z)]^2$, then show that If $u: G \longrightarrow R$ is harmonic then there is a harmonic function $v: G \longrightarrow R$ such that $f = u + iv$ is analytic on G	(U)				
15.	Show that a set $\mathscr{F}\subset C(G,\Omega)$ is normal iff for every compact set $K\subset G$ and $\delta>0$ there are functions $f_1,f_2,\ldots f_n$ in \mathscr{F} such that for f in \mathscr{F} , ther is at least one $k,1\leq k\leq 1$, with $sup\{d(f(z),f_k(z)):z\in K\}<\delta$.	e (R)				
16.	Show that $B(E)$ is a closed subalgebra of $C(K,\mathbb{C})$ that contains every rational function with a pole in E	(A)				
17.	Let V and U be open subsets of $\mathbb C$ with $V\subset U$ and $\partial(V)\cap U=\phi$. If H is a component of U and $H\cap V\neq 0$ then show that $H\subset V$	(A)				
18.	State and prove Euler's theorem	(U) (2 x 6 = 12)				

1 of 2

PART C Answer any 2 questions

19. Let $\prod_{n=1}^\infty X_n,d$), is a metric space. If $\xi^k=\{x_n^k\}_{n=1}^\infty$ is in $\prod_{n=1}^\infty X_n$, then prove that $\xi^k\longrightarrow \xi=\{x_n\}$ iff $x_n^k\longrightarrow x_n$ for each n. Also show that if each (X_n,d_n) is compact then X is compact. (R)

20. Show that H(G) is a complete metric space

(A)

21. If $a\in\mathbb{C}-K$ then show that $(z-a)^{-1}\in B(E)$

(R)

(An)

22. Let G be an open connected subset of (C). Then state and prove the equivalent conditions for G be simply connected.

 $(5 \times 2 = 10)$

Weights: 5

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
----	----------------------------	----	-----------	-----------

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

2 of 2