M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2025

SEMESTER 3: MATHEMATICS

COURSE: 24P3MATT15: MULTIVARIATE CALCULUS AND FOURIER SERIES

(For Regular - 2024 Admission)

Time: Three Hours Max. Weights: 30

	inter time e tiours	man melbinesi se
	PART A	
	Answer any 8 questions	Weight: 1
1.	Find the number of basic k-forms in \mathbb{R}^n .	(U, CO 4)
2.	Define partial derivative.	(R, CO 1)
3.	Define saddle point.	(R, CO 2)
3. 4.	Explain k - surface.	(U, CO 4)
5.	Explain the term Jacobian matrix.	(A, CO 1)
5. 6.	Define stationary points.	(R, CO 2)
o. 7.	• •	•
	Define the term primitive mapping.	(An, CO 4)
8.	Find the gradient vector $ abla f(x,y,z)$ at the point $(1,0,1)$ of the function $f(x,y,z)=3x^3y^4z^5$	(A, CO 1)
9.	Evaluate $\int\limits_{-\pi}^{\pi}e^{inx}dx,n\in\mathbb{N}$	(A, CO 3)
10.	Define Fourier series.	(R, CO 3) (1 x 8 = 8)
	PART B	(1 / 0 0)
	Answer any 6 questions	Weights: 2
11.	Find $J_f(r, heta,\phi)$ where $f(r, heta,\phi)$ is defined by $x=r\sin heta\cos\phi,y=r\sin heta\sin\phi,z=r\cos heta.$	(An, CO 4)
12.	Show that $\sum_{n=-N}^N e^{inx} = rac{\sin(N+rac{1}{2})x}{\sin(x/2)}.$	(A, CO 3)
13.	Assume f is differentiable at c with total derivative T_c . Then prove that the directional derivative $f'(c;u)$ exists for every u in \mathbb{R}^n and we have $T_c(u)=f'(c;u)$.	(A, CO 1)
14.	Find the volume of the largest rectangular parallelopiped that can be inscrib	ped

Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1.$ (An)

Integrate $\int\limits_{I^2} e^{(x+y)} dx dy$ where $I^2 = [0,1] imes [0,2].$ 15. (An, CO 4)

16. (A, CO 3)

State and prove the localization theorem. Let $f(x,y)=\left\{egin{array}{ll} x^2y^2\log(x^2+y^2) & if & (x,y)
eq (0,0) \\ 0 & if & (x,y)=(0,0) \end{array}
ight.$. Compute the 17. (A) gradient vector $\nabla f(x,y)$ at those points(x,y)in \mathbb{R}^2 where it exists.

18. State and prove a global property of functions with a nonzero Jacobian (A, CO 2)determinant.

 $(2 \times 6 = 12)$

PART C Answer any 2 questions

Weights: 5

- 19. If, for some x, there are constants $\delta>0$ and $M<\infty$ such that $|f(x+t)-f(x)|\leq M|t| \text{ for all } t\in (-\delta,\delta)\text{, then show that } \lim_{N\to\infty}S_N(f;x)=f(x). \tag{An, CO 3}$
- 20. Assume that g is differentiable at a, with total derivative g'(a). Let b=g(a) and assume that f is differentiable at b, with total derivative f'(b). Then prove that the composite function $h=f\circ g$ is differentiable at a, and the total derivative h'(a) is given by $h'(a)=f'(b)\circ g'(a)$, the composition of the linear functions f'(b) and g'(a).
- a)Suppose $w=\sum_I b_I(x)dx_I$ is the standard representation of a $k-form\ w$ in an open set $E\in R^n$. If w=0 in E, then prove that $b_I(x)=0$ for every increasing k- index I and for every $x\in E$ b)Suppose T is a 1-1 $\zeta^!-$ mapping of an open set $E\subset R^k$ into R^k such that $J_T(x)\neq 0\ \forall x\in E$. If f is a continuous function on R^k whose support is compact and lies in T(E), then prove that $\int_{R^k} f(y)dy = \int_{R^k} f(T(x))|J_T(x)|dx$
- 22. State and prove the mean value theorem for vector-valued functions. (An, CO 2)

 $(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of complex- valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.	А	2, 5, 8, 13, 20	10
CO 2	Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a sufficient condition for differentiability	А	3, 6, 18, 22	9
CO 3	Explain Fourier series, trigonometric series and Parseval's formula and gamma function, stirling formula.	An	9, 10, 12, 16, 19	11
CO 4	Explain Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, Stokes theorem	An	1, 4, 7, 11, 15, 21	12

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;