Reg. No.....

Name.....

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025 SEMESTER 2 : CHEMISTRY/PHARMACEUTICAL CHEMISTRY COURSE: 24P2CHET07/24P2CPHT07 : PHYSICAL CHEMISTRY - II

(For Regular 2024 Admission)

Time: Three Hours

Max. Weightage : 30

		-Billage : 50
	PART-A	Weight : 1
	Answer any 8 Questions	
1.	Define the term lamb dip spectrum.	(CO1)
2.	What are the factors that affects the width of spectral lines?	(CO1)
3.	Deduce an expression for maximum population (J_{max}) in microwave	
	spectroscopy.	(CO2)
4.	Why Stokes lines are more intense than anti-Stokes lines?	(CO2)
5.	Explain the term frequency doubling.	(CO2)
6.	Define the term double resonance in NMR spectroscopy.	(CO2)
7.	Differentiate between the principles COSY and HETCOR.	(CO2)
8.	¹³ C-NMR measurements are conducted at lower frequencies relative	
	to ¹ H-NMR. Justify.	(CO2)
9.	Distinguish between the working of ¹ H, ¹⁹ F and ³¹ P NMR spectroscopic	
	techniques.	(CO2)
10.	With a suitable example, explain how Mossbauer spectroscopy can be	
	used to identify the oxidation state of a metal ion.	(CO3)
		(1 x 8 = 8)
	PART- B	Weights : 2
	Answer any 6 Questions	
11.	Define the term principal moment of inertia. Based on principal moments of in	
	discuss the classification of molecules.	(CO2)
12.	Demonstrate the effect of isotopic substitution on the rotational energy levels	
	and the spectrum of a diatomic molecule using relevant equations and diagram	n. (CO2)
13.	The equilibrium vibration frequency of the iodine molecule is 215 cm ⁻¹ and	
	the anharmonicity constant is 0.003. Calculate the intensity of the hot band	
	relative to the fundamental band at 300 K.	(CO2)
	Discuss the classification of lasers.	(CO2)
	Discuss the theory of spin coupling in NMR spectroscopy.	(CO2)
16.	What do you mean by Karplus relationship? Discuss its significance in	
	NMR spectroscopy.	(CO2)

17. Explain the working principle and applications of NOE.	(CO2)		
18. Predict the number of lines in the e.s.r. spectrum of the following radica	ls:		
(a) [CF ₂ H]• (b) [¹³ CF ₂ H]•, (c) [CF ₂ D]•, (d) [CCIH ₂]•	(CO3)		
	(2 x 6 = 12)		
PART- C	Weights : 5		
Answer any 2 Questions			
19. (a) Discuss the concept of vibrating rotor and arrive at P, Q and R branch	n lines.		
(b) Using relevant equations, sketch the energy levels and Raman spectr	rum		
of a linear molecule. Mark the Rayleigh, Stokes and Anti-Stokes lines	and (CO2)		
the separation between each of them.			
20. State and explain the Franck Condon principle. Sketch the operations of			
the Franck-Condon principle for (a) internuclear distance is equal in upp	er		
and lower states, (b) upper state internuclear distance is a little less that	n		
in the lower state, (c) upper state internuclear distance is a little greater			
than in the lower state, and (d) upper state internuclear distance is			
considerably greater than the lower state.	(CO2)		
21. Outline the difference between first and second order NMR spectra.			
Discuss various methods used to simplify the second order spectra.	(CO2)		
22. Briefly explain			
(a) Kramer's degeneracy and McConnell equation.			

(b)Factors affecting (i) g-values in EPR and (ii) chemical shift in Mossbauer spectroscopy.

(CO3) (5 x 2 = 10)

	Course Outcome
CO1	Explain the foundations of spectroscopy
CO2	Explain the principles and applications of Microwave, IR, Raman, Electronic and NMR spectroscopy.
CO3	Explain EPR, NQR and Mossbauer spectroscopy.