Reg. No

Name

25P2035

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025

SEMESTER 2 : MATHEMATICS

COURSE : 24P2MATT08 : ALGEBRA -II

(For Regular 2024 Admission)

Time : Three Hours

Max. Weights: 30

	PART A	
	Answer any 8 questions	Weight: 1
1.	Show that $1+\sqrt{2}$ is an algebraic number.	(An, CO 2)
2.	Do complex zeroes of polynomials with complex coefficients occur in conjugate pairs? Justify your answer	(U, CO 3)
3.	How many polynomials(including the zero polynomial) are there of degree ≤ 3 in $\mathbb{Z}_2[x]$?	(A, CO 1)
4.	Is $\mathbb{Q}[x] ig/ \langle x^2 + 6x + 6 angle$ a field? Justify your answer.	(An, CO 1)
5.	Find all zeroes of the polynomial $f(x)=x^5+3x^3+x^2+2x$ in $\mathbb{Z}_5.$	(A, CO 1)
6.	Define primitive n^{th} root of unity in a field. Give an example.	(U, CO 3)
7.	True or False: ${\mathbb R}$ is not perfect. Justify your answer.	(A, CO 4)
8.	Show that $\sqrt{\sqrt[3]{2}-i}$ is an algebraic number.	(A, CO 2)
9.	Find $deg(\sqrt{2},\mathbb{R}).$ Is it equal to $deg(\sqrt{2},\mathbb{Q})$? Justify your answer.	(An, CO 2)
10.	True or False: $\mathbb C$ is a splitting field over $\mathbb R.$ Justify.	(A, CO 4)
		(1 x 8 = 8)
		· · · · /
	PART B	
	Answer any 6 questions	Weights: 2
11.		
11. 12.	Answer any 6 questions Let E be an extension field of F , where F has q elements. Let $lpha \in E$ be	Weights: 2
	Answer any 6 questions Let E be an extension field of F , where F has q elements. Let $lpha\in E$ be algebraic over F of degree n. Prove that $F(lpha)$ has q^n elements. For the evaluation homomorphism $\phi_5:\mathbb{Z}_7[x] o\mathbb{Z}_7$, evaluate	Weights: 2 (A, CO 3)
12.	$\begin{array}{l} \mbox{Answer any 6 questions}\\ \mbox{Let E be an extension field of F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^n elements.\\ \mbox{For the evaluation homomorphism $\phi_5: \mathbb{Z}_7[x] \to \mathbb{Z}_7$, evaluate $\phi_5(3x^{106} + 5x^{99} + 2x^{53})$.\\ \mbox{Let $\{\sigma_i i \in I$\}$ be a collection of automorphisms of a field E. Show that the set E_{σ_i} of all $a \in E$ left fixed by every σ_i for $i \in I$ forms a subfield of f.} \end{array}$	Weights: 2 (A, CO 3) (An, CO 1)
12. 13.	$\begin{array}{l} \text{Answer any 6 questions}\\ \text{Let E be an extension field of F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^n elements.\\ \text{For the evaluation homomorphism $\phi_5: \mathbb{Z}_7[x] \to \mathbb{Z}_7$, evaluate $\phi_5(3x^{106} + 5x^{99} + 2x^{53})$.\\ \text{Let $\{\sigma_i i \in I\}$ be a collection of automorphisms of a field E. Show that the set E_{σ_i} of all $a \in E$ left fixed by every σ_i for $i \in I$ forms a subfield of E. What is this subfield usually referred to as?\\ \text{Show that if $\alpha, \beta \in \overline{F}$ are both separable over F, then $\alpha \pm \beta, \alpha\beta$, and $ext{and α}$} \end{array}$	Weights: 2 (A, CO 3) (An, CO 1) (An, CO 3)
12. 13. 14.	$\begin{array}{l} \mbox{Answer any 6 questions}\\ \mbox{Let E be an extension field of F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^n elements.\\ \mbox{For the evaluation homomorphism $\phi_5: $\mathbb{Z}_7[x] \to \mathbb{Z}_7, evaluate $\phi_5(3x^{106} + 5x^{99} + 2x^{53})$.\\ \mbox{Let $\{\sigma_i i \in I$\}$ be a collection of automorphisms of a field E. Show that the set E_{σ_i} of all $a \in E$ left fixed by every σ_i for $i \in I$ forms a subfield of E. What is this subfield usually referred to as?\\ \mbox{Show that if $\alpha, \beta \in \overline{F}$ are both separable over F, then $\alpha \pm \beta, \alpha\beta$, and α/β, if $\beta \neq 0$, are all separable over F.\\ \end{array}$	Weights: 2 (A, CO 3) (An, CO 1) (An, CO 3) (An, CO 4)
 12. 13. 14. 15. 	$\begin{array}{l} \text{Answer any 6 questions}\\ \text{Let E be an extension field of F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^n elements.\\ \text{For the evaluation homomorphism $\phi_5: \mathbb{Z}_7[x] \to \mathbb{Z}_7$, evaluate $\phi_5(3x^{106} + 5x^{99} + 2x^{53})$.\\ \text{Let $\{\sigma_i i \in I\}$ be a collection of automorphisms of a field E. Show that the set E_{σ_i} of all $a \in E$ left fixed by every σ_i for $i \in I$ forms a subfield of E. What is this subfield usually referred to as?\\ \text{Show that if $\alpha, \beta \in \overline{F}$ are both separable over F, then $\alpha \pm \beta, \alpha\beta$, and α/β, if $\beta \neq 0$, are all separable over F.\\ \text{Prove that $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.} \end{array}$	Weights: 2 (A, CO 3) (An, CO 1) (An, CO 3) (An, CO 4) (An, CO 2)
 12. 13. 14. 15. 16. 	$\begin{array}{l} \text{Answer any 6 questions}\\ \text{Let E be an extension field of F, where F has q elements. Let $\alpha \in E$ be algebraic over F of degree n. Prove that $F(\alpha)$ has q^n elements.\\ \text{For the evaluation homomorphism $\phi_5: \mathbb{Z}_7[x] \to \mathbb{Z}_7$, evaluate $\phi_5(3x^{106} + 5x^{99} + 2x^{53})$.\\ \text{Let $\{\sigma_i i \in I\}$ be a collection of automorphisms of a field E. Show that the set E_{σ_i} of all $a \in E$ left fixed by every σ_i for $i \in I$ forms a subfield of E. What is this subfield usually referred to as?\\ \text{Show that if $\alpha, \beta \in \overline{F}$ are both separable over F, then $\alpha \pm \beta, \alpha\beta$, and α/β, if $\beta \neq 0$, are all separable over F.\\ \text{Prove that $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.\\ \text{What are the conjugates in \mathbb{C} of $\sqrt{3 + \sqrt{2}}$ over \mathbb{Q}? Justify your answer.} \end{array}$	Weights: 2 (A, CO 3) (An, CO 1) (An, CO 3) (An, CO 4) (An, CO 2) (A, CO 3)

	PART C Answer any 2 questions	Weights: 5
19.	(a). Show that a polynomial $f(x) \in F[x]$ of degree 2 or 3 is reducible over F if and only if it has a zero in F . Is the result true for polynomials of degree ≥ 4 ? Justify your answer. (b). How is the reducibility of polynomials over \mathbb{Z} related over their reducibility over \mathbb{Q} ? Show that if $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{Z}[x]$ with $a_0 \neq 0$ and if $f(x)$ has a zero in \mathbb{Q} , then it has a zero $m \in \mathbb{Z}$ and m must divide a_0 . (c). Show that $f(x) = x^4 - 2x^2 + 8x + 1$ is irreducible over \mathbb{Q} .	(E, CO 1)
20.	Let $K=\mathbb{Q}(\sqrt{2},\sqrt{3})$ and $F=\mathbb{Q}.$ Show that K is a finite separable extension of $F.$	(E, CO 4)
21.	Stating the necessary lemmas, establish the existence and uniqueness of ${f GF}(p^n)$, the Galois field of order $p^n.$	(E, CO 3)

22. State and prove Kronecker's Theorem.

(E*,* CO 2)

OBE: Questions to Course Outcome Mapping

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain ring of polynomials, polynomial factorisation and the ideal structure in $F{x}$	E	3, 4, 5, 12, 17, 19	12
CO 2	Comprehend the concept of field extension and the types of extensions.	E	1, 8, 9, 15, 22	10
CO 3	Analyze finite fields and field automorphisms.	E	2, 6, 11, 13, 16, 21	13
CO 4	Analyze splitting fields, separable extensions and the main theorem of Galois theory	E	7, 10, 14, 18, 20	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;