MSc DEGREE END SEMESTER EXAMINATION- MARCH 2025

SEMESTER 4 : MATHEMATICS

COURSE : 21P4MATTEL20 : THEORY OF WAVELETS

(For Regular - 2023 Admission and Supplementary 2022/2021 Admissions)

Duration : Three Hours

Max. Weights: 30

	PART A Answer any 8 questions	Weight: 1
1.	Suppose $M\in Z$ and $z\in C.$ When we say a sequence $\{z_n\}_{n=M}^\infty$ of complex numbers converges to z? When we say this sequence is a Cauchy	(E, CO 3)
2.	Sequence? Suppose $z,w\in l^2(Z)$ and $l\in N.$ Then prove that $U^l(z*w)=U^l(z)*U^l(w).$	(An, CO 4)
3.	Define summable sequence of complex numbers. Hence, define $l^1(Z)$.	(A, CO 4)
4.	If $\psi_{-j,k} = R_{2^jk} f_i$ and $\phi_{-j,k} = R_{2^jk} g_j$, prove that $\hat{\phi}_{-j,k}(m) = e^{-2\pi i 2^j k m/N} \hat{\psi}_{-j,0}(m)$ and $\hat{\phi}_{-i,k}(m) = e^{-2\pi i 2^j k m/N} \hat{\phi}_{-i,0}(m).$	(E, CO 2)
5.	If $z=(1,2,0,4)$, find $z(9),z(-2)$ and $z(0).$	(A, CO 1)
6.	If $u_1, v_1, u_2, v_2, \ldots u_p, v_p$ is the p^{th} stage wavelet filter sequence, describe the output of the analysis phase of the p^{th} stage wavelet filter bank.	(An, CO 2)
7.	Prove that $ z st w = w st z$ for any $z,w \in l^2(Z_N).$	(U, CO 1)
8.	When we say a complex valued function f defined on $[-\pi,\pi)$ is square integrable over $[-\pi,\pi)$?.	(An, CO 3)
9.	Define the trigonometric system. Hence define a trigonometric polynomial. Is $sin(heta- heta_0)$ a trigonometric polynomial ? justify.	(A, CO 3)
10.	When we say a square matrix is unitary?.	
	Prove that $\frac{1}{\sqrt{2}} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$ is unitary.	(An, CO 1)
		(1 x 8 = 8)
	PART B Answer any 6 questions	Weights: 2
11.	i) let $\{a(n)\}_{n\in Z}$ be a sequence of non-negative real numbers such that $ w(n) \leq a(n)$ for all n such that $ n \geq N$ for some N \in Z. If $\sum_{n=1}^{\infty}a(n)$	Weights: 2
	converges, prove that $\sum\limits_{n\in Z} w(n)$ Converges. $^{n\in Z}$	(A, CO 3)
	ii) If $\sum\limits_{n\in Z} w(n)$ Converges absolutely, prove that $\sum\limits_{n\in Z} w(n)$ Converges.	
12.	(a) If $z=(z(0),z(1),\ldots,z(N-1))\in l^2(Z_N)$, what is \overline{z} ? Prove that $(\overline{z})^\wedge(m)=\overline{\hat{z}(N-m)}:0\leq m\leq N-1$	(U, CO 1)
13.	Let $\hat{u} = (\sqrt{2}, 1, 0, 1)$ and $\check{v} = (0, 1, \sqrt{2}, -1)$	(A, CO 1)
	(a) Find u and v	

(b) Construct an orthonormal basis for $l^2(Z_4)$ using u and v

	Notations prove that $\mathbf{v}_{-l} \oplus \mathbf{v} \mathbf{v}_{-l} - \mathbf{v}_{-l+1}$	(5 x 2 = 10)
	Suppose N is divisible by 2^l , $g_{l-1} \in l^2(Z_N)$ and the set $\{R_{2^{l-1}k}g_{l-1}\}_{k=0}^{\frac{N}{2^{l-1}-1}}$ is orthonormal and has $\frac{N}{2^{l-1}}$ elements. Suppose $u_l, v_l \in l^2(Z_{N/2}^{l-1})$ and the system matrix $A_l(n)$ is unitary for all $n = 0, 1, 2, \ldots, (N/2^l) - 1$. Define $f_l = g_{l-1} * U^{l-1}(v_l)$ and $g_l = g_{l-1}(*)U^{l-1}(u_l)$. With the usual notations prove that $V_{-l} \oplus W_{-l} = V_{-l+1}$	(An, CO 2)
22.		
21.	With the usual notations prove that $V_{-l} \oplus W_{-l} = V_{-l+1}$.	(An, CO 4)
20.	i) Suppose $f \in L^1([-\pi,\pi))$ and $< f, e^{in\theta} >= 0$ for all $n \in Z$. Then prove that $f(\theta)$ =0 a.e ii) Prove that the trigonometric system is complete in $L^2([-\pi,\pi))$.	(R, CO 3)
19.	(a) Let $w \in l^2(Z_N)$. Then prove that $\{R_k w\}_{k=0}^{N-1}$ is orthonormal basis for $l^2(Z_N)$ if and only if $ \hat{w}(n) = 1$ for all $n \in Z_N$ (b) If $B = \{R_k w\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(Z_N)$. Prove that $[z]_B = z * \tilde{w}$.	(U, CO 1)
	PART C Answer any 2 questions	Weights: 5
	PART C	(2 x 6 = 12)
18.	Suppose N is divisible by 2^p and let $u_1, v_1, u_2, v_2, \ldots u_p, v_p$ be a p^{th} stage wavelet filter sequence. With the usual notations prove that $f_1, f_1, \ldots, f_p, g_p$ generate a p^{th} stage wavelet basis for $l^2(Z_N)$.	(E, CO 2)
	Define $u_1 = u$ and $v_1 = v$ and for $l = 2, 3, \ldots, p$ define $u_l(n) = \sum_{k=0}^{2^{l-1}-1} u_1(n + \frac{kN}{2^{l-1}})$ and $v_l(n) = \sum_{k=0}^{2^{l-1}-1} v_1(n + \frac{kN}{2^{l-1}})$. Then prove that $u_1, v_1, u_2, v_2, \ldots u_p, v_p$ is a p^{th} stage wavelet filter sequence.	(An, CO 2)
17.	Suppose N is divisible by 2^p . Suppose u, $v \in l^2(Z_N)$ are such that the system matrix A(n) of u and v is unitary for all n. Define $u_1 = u$ and $u_2 = v$ and for $l = 2, 3, \dots, n$ define	
16.	i) Prove that $e^{in heta}$ is square integrable over $[-\pi,\pi)$ for all $n\in Z.$ ii) Prove that the trigonometric system is an orthonormal set in $L^2([-\pi,\pi)).$	(U, CO 3)
	for all k \in Z. (ii) Suppose $z, w \in l^2(Z)$. Prove that (a) $U(z * w) = U(z) * U(w)$. (b) $[U(z)]^{\sim} = U(\tilde{z})$. (c) $(z * w)^{\sim} = \tilde{z} * \tilde{w}$.	(An, CO 4)
15.	(i) Let $w \in l^2(Z)$. Then prove that $\{R_{2k}w\}_{k \in Z}$ is orthonormal if and only if <w, <math="">R_{2k}w> = 1 if k = 0 <w, <math="">R_{2k}w> = 0 if k ≠ 0</w,></w,>	
14.	Give an example of a basis for $l^2(Z_N)$ with justification which is (i) spatially localized but not frequency localized and (ii) frequency localized but not spatially localized.	(A, CO 1)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Define first stage and pth stage wavelet basis for I 2[ZN], Fourier transform including discrete case ,complete orthonormal system , first stage wavelet system and homogeneous wavelet system for I2[Z]	U	5, 7, 10, 12, 13, 14, 19	14
CO 2	Explain the filter bank diagram and its use in the construction of the output of the analysis phase of the filter bank	U	4, 6, 17, 18, 22	11
CO 3	Apply theory of wavelets in the frequency analysis of a video or audio signal.	U	1, 8, 9, 11, 16, 20	12
CO 4	Develop wavelet bases for I 2 [ZN] and I2 [Z],both first stage and pth stage	U	2, 3, 15, 21	9

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;