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PART A
Answer any 10 (2 marks each)

1. Find the Fourier coefficient  for the func�on  in the interval -π<x<π

2. Give an example of a metric on  other than the usual metric.

3. Give an example of a sequence which is not convergent but has a limit point for its set of
points.

4. Define Laplace transform and find the Laplace transform of 

5. Explain periodic func�ons. Sketch the graph of the periodic func�on  with period

2π from -∞ to ∞

6. Find the set of all limit points of the sets  and  in  with the usual metric.

7. What do you mean by a Cantor set?

8. Find the Laplace transform of 

9. Write the formula for half range Fourier cosine series of a func�on defined in the
interval 0,l

10.
Find the inverse Laplace transform of  .

11. Give an example of a func�on which is con�nuous but not uniformly con�nuous on (a) 
(b) .

12. Define a Cauchy sequence. Give example.

PART B
Answer any 5 (5 marks each)

13. Find the inverse Laplace transform of 

14. Prove that if { } is a sequence of nowhere dense sets in a complete metric space , then
there exists a point in  which is not in any of the 's

15. Find the Fourier series of 

16. Let  be a non-empty set, and let  be a func�on which sa�sfies the
following:  and . Show that  is a metric

on .

17. Find the Laplace transform of 

18. Let  be a complete metric space and  be a closed subspace of , then prove that  is
complete.

19. Let  be a metric space and  be a subset of . Prove that Int( ) is an open subset of 
which contains every open subset of .

20. Obtain cosine and sine series for  in the interval . Hence show that

.
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PART C
Answer any 3 (10 marks each)

21. Prove that every non-empty set on the real line is the union of a countable disjoint class of
open intervals.

22. State and prove the necessary and suffcient sequen�al criterion for a func�on 
to be con�nuous at a point , where  and  are metric spaces. 

23. Find a series of cosines of mul�ples of x which will represent  in the interval 

and show that .

24. a) Solve 

b) Evaluate 
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