Reg.	. No
	M.Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025
	SEMESTER 2 : INTEGRATED M.Sc. PROGRAMME COMPUTER SCIENCE - DATA SCIENCE
	COURSE: 21UP2CRMCP05: DATA STRUCTURE USING C++
	(For Regular 2024 and Improvement / Supplementary 2023/2022/2021 Admissions)
Time	e: Three Hours Max. Weightage:: 30
	PART A
	Answer any 8 Questions
1.	Define sparse matrices.
2.	Recursion can be implemented using the data structure
3.	The time complexity of linear search algorithm is
4.	The time complexity to search for a node in a linked list is
5.	Give two examples of notations that are used in defining the complexity of algorithms.
6.	In sorting algorithm, a pivot element is selected to partition the array.
7.	Draw a diagram that represents a circular linked list containing 3 nodes.
8.	Represent a singly-linked list containing three nodes by a diagram.
9.	Define polish notation in writing arithmetic expressions.
10.	State any one limitation of a normal queue implemented using an array.
	(1 x 8 = 8 weight)
	PART B Answer any 6 (2 marks each)
11.	Write an algorithm to check whether a list is a circular linked list or not?
12.	Write the algorithm to remove an element from a queue.
13.	Build a sorted heap from the following data: 46, 25, 35, 49, 10, 92, 83, 32.
14.	Memory for various program elements can be allocated during compile-time or at runtime. With an example, explain how both these methods differ.
15.	Write an algorithm to delete a node at a given position from a linked list.
16.	Suppose a stack STK is allocated N=6 memory cells and initially STK is empty (TOP:=0). Find the output of the following module: 1. Set PPP:= 2 and QQQ:=5. 2. Call PUSH(STK, PPP). Call PUSH(STK, 4). Call PUSH(STK, QQQ + 2).

Call PUSH(STK, 4).

Call PUSH(STK, QQQ + 2).

Call PUSH(STK, 9).

Call PUSH(STK, PPP + QQQ).

3. Repeat while TOP = 0:

Call POP(STK, DATA).

Write: DATA.

4. Return.

- 17. Write an algorithm that finds the value of a postfix expression.
- 18. Write the algorithm that deletes an element at a particular location in an array.

(2 x 6 = 12 Weight)

1 of 2

PART C Answer any 2 (5 marks each)

- 19. Write a C++ program to create a stack using an array. Demonstrate underflow and underflow situations.
- 20. With an algorithm to implement the procedure for bubble sort, write a program to perform the same on floating-point numbers. The numbers should be sorted in descending order.
- 21. Create a class QUEUE with the following specifications and implement the given functionality:

Data Members: q[50], front, rear

Member functions: create_queue() - to create a queue, dequeue() - to delete an element, traverse() - to display the queue.

22. Write a program using classes and objects to insert at a given position and traverse the linked list.

 $(5 \times 2 = 10 \text{ Weight})$

2 of 2