Reg. No.....

Name.....

B A, B SC, B COM DEGREE END SEMESTER EXAMINATION - APRIL 2025

UGP (HONS.) SEMESTER - 2: DISCIPLINE SPECIFIC COURSE

COURSE: 24UEMSDSC105: DIFFERENTIAL CALCULUS AND APPLICATIONS

(For Regular 2024 Admission)

Time: 2 Hours

Max. Marks - 70

(Use of non-programmable scientific calculator is permitted)

PART A

Maximum mark from this part is 10. Each question carries 2 marks.

1. Distinguish between open interval and closed interval.	(CO1, U)
Define continuity of a function f(x) at a point x= a.	(CO1, R)
3. What is meant by price elasticity of supply?	(CO2 <i>,</i> A)
4. Find $\frac{dy}{dx}$ if $y = 4x^{\frac{3}{4}}$.	(CO2, A)
5. State Leibnitz's Theorem.	(CO3, R)
6. Find $\frac{\partial u}{\partial x}$ if $u = f(x,y) = x^2 + y^2 - 3xy$.	(CO3, E)
7. Write the conditions for maxima of a function $y = f(x)$	(CO4, A)
8. What are the conditions for minima of a function $u = f(x,y)$	(CO4, A)

PART B

Maximum mark from this part is 30. Each question carries 5 marks.

9. Prove that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$	(CO1, A)
10. Evaluate $\lim_{x \to 0} (1 - ax)^{\frac{1}{bx}} = e^{\frac{-a}{b}}$.	(CO1, A)
11. Differentiate using first principles, $y = x^n$.	(CO2, A)
12. Find $\frac{dy}{dx}$ if $y = t^2 - 3t + 2$, $t = x^2 - 5$.	(CO2, E)
13. Find $\frac{dy}{dx}$ if $ax^2 + 2hxy + by^2 = 1$	(CO2, E)
14. Find the total derivative $\frac{du}{dt}$ if u = x ² +2x+ y ² , x = t and y = $\frac{1}{x} = \frac{1}{t}$	(CO3, A)
15. Find the extreme values of the function $y = x^3 - 12x$.	(CO4, E)
16. Find all the second order partial derivatives of the function $u = f(x,y) = x^2 e^y$ and	
show that $f_{xy} = f_{yx}$	(CO4, E)

Sacred Heart College (Autonomous) Thevara Page 1 of 2

PART C

Maximum mark from this part is 30. Each question carries 15 marks

17. The demand curve for a monopolist is given by $p = f(x) = 100 - x - x^2$ (CO2,A)

- i. Find MR for any level of output.
- ii. What is MR when x = 0 and x = 2
- 18. Verify Euler's Theorem, if $u = f(x, y) = x^2 xy + 2y^2$. (CO3, An)

19. If
$$y\sqrt{x^2 + 1} = \log(x + \sqrt{x^2 + 1})$$
, show that (CO3, An)

i. $(x^2 + 1)\frac{dy}{dx} + xy - 1 = 0$

ii.
$$(x^2 + 1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$$

20. Show that $y = x + \frac{1}{x}$ has one maximum and one minimum value and the minimum value is more than the maximum value. (CO4, E)