B A, B SC, B COM DEGREE END SEMESTER EXAMINATION - APRIL 2025

UGP (HONS.) SEMESTER - 2: DISCIPLINE SPECIFIC COURSE

COURSE: 24UMATDSC102: GATEWAY TO MATHEMATICS

(For Regular 2024 Admission)

Time: 2 Hours

Max. Marks - 70

PART A

Each question carries 2 marks. A maximum of 10 marks can be scored from this part.

1. Evaluate $\int_0^1 (3x^2 + 2x) dx$.	[CO 1]
2. Define definite integral of a function.	[CO 1]
3. Write the formula for the length of the curve.	[CO 2]
4. Evaluate $\int_0^1 \int_0^2 (x+5) dy dx$.	[CO 2]
5. Find the first order partial derivatives of $f(x, y) = 4x^2y^3$.	[CO 3]
6. Find $\frac{dy}{dx}$, if $x^3 + y^2 x - 3 = 0$.	[CO 3]
7. Define critical points.	[CO 4]
8. Find the gradient of $f(x, y, z) = xy^2 z^3$ at the point (1,1,1).	[CO 4]

PART B

Each question carries 5 marks. A maximum of 30 marks can be scored from this part.

9. Evaluate
$$\int_{-\pi/4}^{\pi/4} \sec x \tan x \, dx$$
. [CO 1]

- 10. Find the area under the curve $y = \cos x$ over the interval $\left[0, \frac{\pi}{2}\right]$. [CO 1]
- 11. Find the arc length of the curve $y = x^{3/2}$ from (1,1) to $(2,2\sqrt{2})$. [CO 2]
- 12. Find the area of the region enclosed by $y = x^2$ and y = x + 6. [CO 2]
- 13. Find the second order partial derivatives of $f(x, y) = x^2y^3 + x^4y$. [CO 3]
- 14. Find an equation for the tangent plane and parametric equations for the normal line to the surface

$$z = x^2 y$$
 at the point (2,1,4). [CO 4]

15. If
$$z = x^2y$$
, $x = t^2$, $y = t^3$, then find $\frac{dz}{dt}$ using chain rule. [CO 3]

16. Find the directional derivative of $f(x, y) = e^{xy}$ at (-2,0) in the direction of the unit vector that makes an angle of $\frac{\pi}{3}$ with the positive x axis. [CO 4]

PART C

Each question carries 15 marks. A maximum of 30 marks can be scored from this part.

- 17. Evaluate $\int_0^3 f(x) dx$ if $f(x) = \begin{cases} x^2, & x < 2\\ 3x 2, & x \ge 2. \end{cases}$ [CO 1]
- 18. Use a double integral to find the volume of the solid that is bounded above the plane
 - z = 4 x y and below by the rectangle R = [0,1]x[0,2]. [CO 2]
- 19. Locate all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$. [CO 4]

20. If w = e^{xyz}, x = 3u + v, y = 3u - v, z = u²v, then using chain rule find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$. [CO 3]