Reg. No

Name

25P2051

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025

SEMESTER 2 : MATHEMATICS

COURSE : 24P2MATT09 : ALGEBRAIC NUMBER THEORY

(For Regular - 2024 Admission)

Time : Three Hours

Max. Weights: 30

PART A									
Answer any 8 questions W									
1.	Define cyclotomic field.	(R, CO 2)							
2.	Prove or disprove: $(1+\sqrt{17})/(2-\sqrt{19})$ is an algebraic number but not an algebraic integer.	(A, CO 1)							
3.	If $\mathfrak{a} eq 0$ is an ideal of \mathfrak{O} with $ \mathrm{N}(\mathfrak{a})$ is prime , prove that $\mathfrak{a} \mathrm{N}(\mathfrak{a})$	(A, CO 4)							
4.	Prove that the ring of integers $\mathfrak O$ in a number field K is noetherian.	(U, CO 3)							
5.	Define Trace of $lpha\in K$	(U <i>,</i> CO 2)							
6.	Define a finite extension of a field.	(R, CO 1)							
7.	Let D be a domain and x and y non-zero elements of D . Prove that x and y are associates $$ if and only if $\langle x angle=\langle y angle.$	(A, CO 3)							
8.	Let $\mathfrak{a},\mathfrak{b}$ be two ideals of $\mathfrak{O}.$ Prove that $\mathfrak{a} \mathfrak{b}$ iff $\mathfrak{a}\supseteq\mathfrak{b}$	(An, CO 4)							
9.	Find the group of units of the ring of integers in $\mathbb{Q}\left(\sqrt{-1} ight)$.	(U, CO 3)							
10.	Prove or disprove: K -conjugates of $lpha$ are distinct.	(A, CO 1) (1 x 8 = 8)							
	PART B								
	Answer any 6 questions	Weights: 2							
11.	Find the group of units of the ring of integers in $\mathbb{Q}\left(\sqrt{d} ight)$ where $d<0.$	(U, CO 3)							
12.	Evaluate $N(1-\zeta)$.	(A, CO 2)							
13.	Let $ heta$ be a complex number satisfying a monic polynomial equation whose coefficients are algebraic integers. Show that $ heta$ is an algebraic integer.	(An, CO 1)							
14.	Prove that $\mathfrak O$ of $\mathbb Q\left(\sqrt{-5} ight)$ is not a unique factorization domain.	(An, CO 3)							
15.	If \mathfrak{a} is proper ideal of \mathfrak{O} , prove that $\mathfrak{a}^{-1} \supsetneq \mathfrak{O}$	(An <i>,</i> CO 4)							
16.	Find all monomorphisms from $\mathbb{Q}(\sqrt[3]{7}) o \mathbb{C}.$	(A, CO 1)							
17.	If a and b are non-zero ideals of $\mathfrak O$, prove that there exists $lpha\in\mathfrak a$ such that $lpha\mathfrak a^{-1}+\mathfrak b=\mathfrak O$.	(A)							
18.	Find the integral basis and discriminant for $\mathbb{Q}(\sqrt{3}).$	(A, CO 2) (2 x 6 = 12)							
	PART C								
	Answer any 2 questions Weights: 5								
19.	Classify the ring of integers of $\mathbb{Q}(\zeta).$	(An, CO 2)							
20.	Prove that factorization of elements of $\mathfrak O$ into irreducibles is unique if and only if every ideal of $\mathfrak O$ is principal.	(A, CO 4)							
21.	Prove that a complex number $ heta$ is an algebraic integer if and only if the additive group generated by all powers $1, heta, heta^2,\cdots$ is finitely generated.	(An, CO 1)							

22. Prove that in a domain, in which factorization into irreducibles is possible, factorization is unique if and only if every irreducible is prime. (A, CO 3)

(5	х	2	=	10)
----	---	---	---	-----

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain the properties of algebraic numbers, algebraic integers and integral bases.	U	2, 6, 10, 13, 16, 21	12
CO 2	Distinguish quadratic and cyclotomic extensions and traces and norms.	Α	1, 5, 12, 18, 19	11
CO 3	Analyze factorization into irreducibles in Euclidean Domains and quadratic fields	An	4, 7, 9, 11, 14, 22	12
CO 4	Analyze prime factorization of Ideals, the norm of an ideal, nonunique factorization of cyclotomic fields	An	3, 8, 15, 20	9

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;