B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2025

SEMESTER 4 : MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS/CHEMISTRY)

COURSE : 19U4CPMAT04 : Fourier Series, Laplace Transforms, Fourier Transforms, and Groups.

(For Regular 2023 Admission and Improvement/Supplementary 2022/ 2021/2020/2019 Admissions)

Time : Three Hours

PART A

Answer any 10 (2 marks each)

- 1. State the Dirchlet's conditions
- 2. Find the Laplace transform of $\cosh at$
- 3. Define Laplace transform and find the Laplace transform of e^{ax}
- 4. Define Laplace transform and find the Laplace transform of $\cos ax$
- 5. Write the inversion Formula of the Fourier Sine Transform.
- 6. Explain periodic functions. Sketch the graph of the periodic function f(x) = x with period 2π from - ∞ to ∞
- 7. Is the set of rational numbers \mathbb{Q} , under multiplication, a group? Justify your answer.
- 8. Give an example of an infinite group that is not cyclic.
- 9. Define the Complex Fourier Transform.
- 10. Write the inversion Formula of the complex Fourier Transform.
- 11. Explain a periodic function with example
- 12. How many elements does the symmetric group S_n have?

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Find the inverse Laplace transform of $\frac{2s^2-1}{(s^2+1)(s^2+4)}$
- 14. Show that the identity element in a group is unique.
- 15. Obtain Fourier series of the function $f(x) = egin{cases} \pi x & ; 0 \leq x \leq 1 \ \pi(2-x) & ; 1 \leq x \leq 2 \end{cases}$
- 16. Find the Fourier sine transform of $2e^{-5x} + 5e^{-2x}$.
- 17. Explain the group D_4 . Write down its elements and its subgroups.
- 18. Find the Laplace transform of $\frac{\cos at \cos bt}{t}$
- 19. Find the Fourier series of the function $f(x) = x^2, 0 < x < 2\pi$
- 20. Find the Fourier sine transform of $f(t) = \frac{1}{t}e^{-at}$.

(5 x 5 = 25)

PART C

Answer any 3 (10 marks each)

- 21. (a) Let S be the set of all real numbers except -1. Define * on S by a * b = a + b + ab. Show that < S, * > is a group. (b) Show that the left and right cancellation laws hold in any group < G, * >.
- 22. Find the Fourier transform of $f(x) = egin{cases} e^x, & x < 0 \ e^{-x}, & x > 0 \end{bmatrix}$.

Max. Marks: 75

23. Find the Fourier series to represent the function f(x) given

by
$$f\left(x\right) = \begin{cases} x & 0 \le x \le \pi\\ 2\pi - x & \pi \le x \le 2\pi \end{cases}$$
. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}$
24. a) Solve $\frac{d^2x}{2} + 2\frac{dx}{4} + 5x = e^{-t} \sin t$, $x(0) = 0$, $x'(0) = 1$

^{24.} a) Solve
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}\sin t$$
, $x(0) = 0$, $x'(0) = 1$
b) Apply convolution theorem to find the inverse Laplace transform of $\frac{s^2}{s^4 - a^4}$

 $s^4 - a^4$ (10 x 3 = 30)