END SEMESTER EXAMINATION - APRIL 2025

SEMESTER 2 - INTEGRATED M.Sc. PROGRAMME COMPUTER SCIENCE - DATA SCIENCE

COURSE : 21UP2CPCMT02 - MATHEMATICS - II - LINEAR ALGEBRA

(For Regular - 2024 Admission and Improvement / Supplementary - 2023/2022/2021 Admissions)

Time : Three Hours

Max. Weightage : 30

PART A

Answer any 8 Questions

- 1. Define Linear Map with an Example.
- Check whether the following vectors in F³ can be written as a linear combination of the vectors (2,1,-3) and (1,-2,3);
 - 1. (17,-4,2) 2. (17,-4,5)
- 3. Prove the following result;
 - 1. For each fixed $u \in V$, the function that takes V to < v,u > is a linear map from V to F. 2. < 0,u> = 0 for every $u \in V$.
- 4. Give matrix representation for the following operators; $T \in L(F^2)$ defined by T(x,y) = (2x+3y, 5x).
- 5. Define range of a transformation and give the range of the zero transformation.
- 6. Define Basis of a vector space and give the standard basis for F², P² and F³
- 7. Prove that a0 = 0 for every $a \in F$.
- 8. Suppose $v \in V$, then prove the following;
 - 1. ||v|| =0 if and only if v=0
 - 2. $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in F$
- 9. Define orthonormal list of vectors.
- 10. Define Eigenspace and diagonalizable operator.

(1 x 8 = 8 Weight)

PART B

Answer any 6 Questions

- 11. Check whether T ∈ L(P²) defined by T(at²+bt+c) = (5a+b+2c)t² + 3bt +(2a+b+5c) is diagonalizable with respect to the basis t²-2t,-2t+1,t²+1 of P².Give valuable reason for your answer.
- 12. Suppose V and W are finte dimensional vector spaces such that dimV > dimW .Then prove that no linear map from V to W is injective
- 13. Check the following list of vectors are orthonormal list in F^{3} ,

 $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$

- 14. Suppose $T \in L(V,W)$. Then prove that null T is a subspace of T
- 15. Suppose V is finite dimensional ,Then prove that every orthonormal list of vectors in V can be extended to an orthonormal basis of V

- 16. Suppose that U and W are subspaces of V.Then Prove that U+W is a direct sum if and only if $U \cap W = 0$
- 17. Check whether $T \in L(P^1)$ defined by T(at+b) = (4a+3b)t + (3a-4b) is diagonalizable with respect to the basis 3t+1, t+3 of P^1 . Give valuable reason for your answer.
- 18. Check whether the list (1,2,1), (2,1,0), (1,-2,2) is a basis in F³

(2 x 6 = 12 Weight)

PART C Answer any 2 Questions

- Suppose v₁,.....,v_n is basis of V and w₁,....,w_n ∈ W. Then prove that there exists a unique linear map T: V→W such that Tv_i = w_i
- 20. Find $u \in P_2(R)$ such that $\int_{-1}^1 p(t) \cos(\pi t) dt = \int_{-1}^1 p(t) u(t) dt$ for every $p \in P_2(R)$
- 21. Check whether the following transformations are diagonalizable over the given basis, give valuable reason for your answers.
 - 1. T \in L(P¹) defined by T(at+b) = (2a-3b)t +(a-2b) with respect to the basis 3t+1,t+1 of P¹
 - 2. $T \in L(P^1)$ defined by T(at+b) = (4a+3b)t + (3a-4b) with respect to the basis 3t+1, - t+3 of P^1
 - 3. T \in L(P²) defined by T(at²+bt+c) = (5a+b+2c)t² + 3bt +(2a+b+5c) with respect to the basis t²-2t,-2t+1,t²+1 of P²
- 22. Prove that a list v_1, \ldots, v_n of vectors of V is a basis of V if and only if every $v \in V$ can be written uniquely in the form

 $v = a_1 v_1 + \dots + a_n v_n$, $a_1, \dots, a_n \in F$.

(5 x 2 = 10 Weight)