Reg. No

Duration : Three Hours

Name

25P2019

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025

SEMESTER 2 : MATHEMATICS

COURSE : 24P2MATT07 : COMPLEX ANALYSIS

(For Regular 2024 Admission)

Max. Weights: 30

PART A							
	Answer any 8 questions	Weight: 1					
1.	Define limit superior and limit inferior with an example	(A, CO 4)					
2.	State the second and third version of Cauchy's theorem	(R)					
3.	Prove that $e^{-z}=rac{1}{e^z}$	(A)					
4.	Show that $\lim_{n o\infty}n^{1/n}=1$	(U)					
5.	For the $\ f(z)=rac{sinz}{z}$ has an isolated singularity at $z=0.$ Determine its						
	nature; if it is a removable singularity define $f(0)$ so that f is analytic at $z=0$; if it is a pole find the singular part	(An)					
6.	Evaluate $\int_{\gamma} rac{dz}{z-a}, \gamma(t) = a + r e^{it}, 0 \leq t \leq 2\pi$	(A)					
7.	Define removable singularity? Give an example of a function with a	(11)					
	removable singularity and non removable singularity.	(U)					
8.	Find all entire functions f such that $f(x)=e^x$ for $x\in \mathbb{R}$	(E)					
9.	State the second version of the Maximum Modulus theorem and give the importance of boundedness in it	(A, CO 4)					
10.	Define cross ratio? Evaluate the cross ratio $(7+i,1,0,\infty)$	(A)					
		(1 x 8 = 8)					
	PART B						
	Answer any 6 questions	Weights: 2					
11.	Answer any 6 questions Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots + n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then show that for a in $G - \gamma$ and $k \ge 1$, $f_k(x) \sum_{i=1}^m n(x, x) = k \sum_{i=1}^m 1 \int_{-\infty}^{-\infty} f_i^{(z)} dx$	Weights: 2 (A)					
11.	Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then	-					
11. 12.	Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots + n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then show that for a in $G - \gamma$ and $k \ge 1$,	-					
	Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots \dots n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then show that for a in $G - \gamma$ and $k \ge 1$, $f^k(a) \sum_{j=1}^m n(\gamma_j, a) = k! \sum_{j=1}^m \frac{1}{2\pi i} \int_{\gamma_j} \frac{f(z)}{(z-a)^{k+1}} dz$ If G is simply connected and $f: G \to \mathbb{C}$ is analytic in G then prove that f	(A)					
12.	Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots \dots n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then show that for a in $G - \gamma$ and $k \ge 1$, $f^k(a) \sum_{j=1}^m n(\gamma_j, a) = k! \sum_{j=1}^m \frac{1}{2\pi i} \int_{\gamma_j} \frac{f(z)}{(z-a)^{k+1}} dz$ If G is simply connected and $f: G \to \mathbb{C}$ is analytic in G then prove that f has a primitive in G If $f: G \longrightarrow \mathbb{C}$ is analytic , then show that f preserves angles and each	(A) (A)					
12. 13.	Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots \dots n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then show that for a in $G - \gamma$ and $k \ge 1$, $f^k(a) \sum_{j=1}^m n(\gamma_j, a) = k! \sum_{j=1}^m \frac{1}{2\pi i} \int_{\gamma_j} \frac{f(z)}{(z-a)^{k+1}} dz$ If G is simply connected and $f: G \to \mathbb{C}$ is analytic in G then prove that f has a primitive in G If $f: G \longrightarrow \mathbb{C}$ is analytic, then show that f preserves angles and each point z_0 of G where $f'(z_0) \neq 0$ Let $f(z) = \frac{1}{z^2(4z-1)}$ find the Laurent series expansion valid in the region a) $0 \le z \le 1/4$ and b) $ z \ge 1/4$	(A) (A) (An, CO 1)					
12. 13. 14.	Let G be an open subset of the plane and $f: G \to \mathbb{C}$ an analytic function. If $\gamma_1, \gamma_2, \ldots, \gamma_m$ are closed rectifiable curves in G such that $n(\gamma_1; w) + n(\gamma_2; w) + \ldots \dots n(\gamma_m; w) = 0$ for all w in $\mathbb{C} - G$ then show that for a in $G - \gamma$ and $k \ge 1$, $f^k(a) \sum_{j=1}^m n(\gamma_j, a) = k! \sum_{j=1}^m \frac{1}{2\pi i} \int_{\gamma_j} \frac{f(z)}{(z-a)^{k+1}} dz$ If G is simply connected and $f: G \to \mathbb{C}$ is analytic in G then prove that f has a primitive in G If $f: G \longrightarrow \mathbb{C}$ is analytic, then show that f preserves angles and each point z_0 of G where $f'(z_0) \neq 0$ Let $f(z) = \frac{1}{z^2(4z-1)}$ find the Laurent series expansion valid in the region a)	(A) (A) (An, CO 1)					

17.	Discuss the transformation $w=z^n$ and $w=z^{1/n}$
-----	--

18. State and prove the Schwarz's lemma

(A) (R, CO 4) (2 x 6 = 12)

PART C Answer any 2 questions Weights: 5 Let $f(z) = \sum_{n=0}^\infty a_n (z-a)^n$ have radius of convergence $R \geq 0$ then 19. prove the following a) For each $k \geq 1$ the series $\sum_{n=k}^{\infty}n(n-1).\ldots\ldots(n-k+1)a_n(z-a)^{n-k}$ has radius of convergence R(U, CO 1) b) The function f is infinitly differentiable on B(a; R) and furthermore, $f^{(k)}(z)$ is given by the series $\sum_{n=k}^\infty n(n-1) \dots (n-k+1) a_n (z-a)^{n-k}$ for all $k \geq 1$ and $|z-a| \leq R$ c) For $n \geq 0$, $a_n = rac{1}{n!} f^{(n)}(a)$ Suppose f is analytic on D with $|f(z)| \leq 1$, also suppose |a| < 1 and 20. f(a) = lpha, hence $|f(z)| < 1, \forall z \in D$ and so f maps D into D. Among all (A, CO 4) functions f having these properties what is the maximum possible value of |f'(a)| ? Show that $\int_{-\infty}^{\infty} rac{x^2}{1+x^4} dx = rac{\pi}{\sqrt{(2)}}$ 21. (A, CO 3) Let γ be a closed rectifiable curve in \mathbb{C} . Then prove that $n(\gamma; a)$ is a 22. constant for a belonging to a component of $G = \mathbb{C} - \gamma$. Also $n(\gamma; a) = 0$ (R) for a belonging to the unbounded component of G $(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.	
CO 1	Understand concept of representation of complex numbers in the extended complex plane.	U	13, 19	7	
CO 3	Represent analytic functions as power series	U	14, 16, 21	9	
CO 4	Identify zeros and classify singularities of complex function	U	1, 9, 15, 18, 20	11	

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;