Max. Marks: 60

B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2025

SEMESTER 6 : CHEMISTRY

COURSE : 19U6CRCHE09 ; INORGANIC CHEMISTRY

(For Regular 2022 Admission and Supplementary 2021/2020/2019 Admissions)

Time : Three Hours

PART A

Answer All (1 mark each)

- 1. How many unpaired electrons are there in the complex $[Ru(H_2O)_6]^{2+}$.
- 2. How many Cs⁺ and Cl⁻ ions are there in each CsCl unit cell?
- 3. Which of the following ions is colorless, a) Lu³⁺ or b) Eu³⁺
- 4. What are pseudohalogens?
- 5. What is Caro's acid?
- 6. Give an example of closocarboranes.
- 7. Name the coordination compound [Cr(H₂O)₅(SCN)]Cl₂ according to IUPAC system of nomenclature.
- 8. What are called Berthollide compound?

 $(1 \times 8 = 8)$

PART B Answer any 6 (2 marks each)

- 9. Give the structure of peroxy acids of sulfur?
- 10. Why are Cr, Mo and W hard metals while Zn, Cd and Hg are not very hard metals?
- 11. Explain why crystal defects are sometimes called thermodynamic defects.
- ^{12.} Comment on the optical activity of $[Cr(ox)_3]^{3+}$ and cis- $[CoCl_2(en)_2]^+$
- 13. Calculate the number of Zinc ions and sulphide ions in a unit cell of ZnS.
- ^{14.} In $[Cu(H_2O)_6]^{2+}$, the axial Cu-O bonds are longer than equatorial Cu-O bonds, Why?
- 15. Arrange the following oxo acids in the increasing order of their acid strengths; HClO₄, HClO₃, HClO₂, HClO.
- 16. Differentiate between high spin and low spin complexes with examples.

(2 x 6 = 12)

PART C Answer any 4 (5 marks each)

- 17. Explain in detail about stoichiometric defects in crystals.
- 18. Discuss in detail about the separation of lanthanides by ion exchange method.
- 19. Explain why non-stoichiometric NaCl is yellow and non-stoichiometric ZnO is yellow.
- 20. Explain the different kinds of structural isomerism exhibited by coordination complexes.
- [Co(NH₃)₆]³⁺ is diamagnetic complex and [CoF₆]³⁻ is a paramagnetic complex. Substantiate the above statement using Valence bond theory. Classify the above-mentioned complexes into inner orbital and outer orbital complexes.
- 22. Why transition elements show a tendency to form a large number of complexes?

(5 x 4 = 20)

PART D Answer any 2 (10 marks each)

- 23. Briefly explain a) super acids b) crown ethers c) interhalogen compound d) oxy acids of halogen.
- 24. How would you define a transition element? List the properties associated with transition elements.
- 25. What are the salient features of Valence bond theory for bonding in complexes? Explain the structure and magnetic properties of (i) [Ni(CN)₄]²⁻ and (ii) [Cr(NH₃)₆]³⁺ using valence bond theory.
- 26. Explain the salient aspects of molecular orbital theory. Describe the MO diagram of $[CoF_6]^{3-}$ and predicts its magnetic behavior.

(10 x 2 = 20)