Name

25P2004

Max. Weights: 30

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025

SEMESTER 2 : PHYSICS

COURSE : 24P2PHYT05 : MATHEMATICAL METHODS IN PHYSICS - II

(For Regular 2024 Admission)

Duration : Three Hours

Durue	PART A	
	Answer any 8 questions	Weight: 1
1.	Write a note on Gamma functions.	(U)
2.	State the necessary and sufficient conditions for a function to be analytic.	(U)
3.	Evaluate $\mathcal{L}(t^n e^{at}).$	(A)
4.	Separate the partial differential equation $ abla^2\psi(x,y,z)=0$, into three ordinary differential equations.	(A)
5.	Show that $f(z)=z^2$ satisfies Cauchy Reimann equations.	(A)
6.	State and explain the theorem of Fourier series.	(U)
7.	Write the Legendre's equation for n order.	(U)
8.	What is the Laplace transform of cosh(at)?	(A)
9.	Express Taylor series expansion for a function f(z) with centre at z ₀ .	(U)
10.	Write down two fundamental equations of Physics that are in the form of partial differential equation.	(A)
		(1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2
11.	Find the Laplace transform of $f(t)$ defined as $f(t) = \left\{egin{array}{c}t, 0 < t < 1\ 1, t > 1\end{array} ight.$	(A)
12.	Prove that $P_m(0)$ = $(-1)^m rac{2m!}{2^{2m}(m!)^2}.$	(A)
13.	Find the Green's function for the differential equation $rac{d^2y}{dx^2}+k^2y=f(x)$	(0)
	subject to the boundary conditions $y(0)=0=y(a).$.	(A)
14.	Obtain the one dimensional heat equation.	(A)
15.	Show the transformation of gamma function.	(A)
16.	Given w(x,y) = u(x,y)+iv(x,y). If u and v are real functions and if w is analytic, show that $ abla^2 u = abla^2 v = 0.$	(A)
17.	Explain the momentum representation of a quantum particle.	(An)
18.	Expand cos(z) as a Taylor series about $z=\pi/4.$	(A)
		(2 x 6 = 12)
	PART C Answer any 2 questions	• •

- 19. Show that $\int_0^\infty rac{x^a}{x+1} dx = rac{\pi a}{\sin \pi a}$ where -1 < a < 1. ()
- 20. Find the Laplace transform of (i) $rac{\sin(at)}{t}$ and (ii) $rac{\cos(at)-\cos(bt)}{t}+tsin(at)$ (A)

1 of 2

25-03-2025, 12:14

21.	Obtain the recurrence relations for Laguerre polynomial.	(A)
22.	Obtain one dimensional heat flow equation. Find its solution by method of separation of variables.	(A) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO Cour	rse Outcome Description	CL	Questions	Total Wt.
---------	-------------------------	----	-----------	-----------

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;