M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2025

SEMESTER 2 : MATHEMATICS

COURSE : 24P2MATT06 : BASIC TOPOLOGY

(For Regular - 2024 Admission)

Duration : Three Hours

PART A **Answer any 8 questions** Weight: 1 1. Show that any function into a trivial space is continuous. (R) 2. Let X be an infinite set where the closed sets are finite sets. Is X (U) Hausdorff? Prove that compact subsets in a Hausdorff space are closed. (U) 3. 4. Define a lebesgue number. (R) 5. Let X be a connected space. Show that only clopen subsets of X are X (A) and ϕ . 6. Define closed set and open sets. Give examples of sets that are (i) both (R) open and closed (ii) neither open nor closed. Let $Z \subset Y \subset X$ and \mathscr{T} be a topology on X then, prove that 7. (U) $\mathcal{T}/Y/Z = \mathcal{T}/Z.$ 8. Show that the inclusion function is continuous. (U) 9. Define closure operator on a topological space (X, \mathscr{T}) . (R) 10. Define (i) Path connected (ii) Locally connected. (U) $(1 \times 8 = 8)$ PART B Answer any 6 questions Weights: 2 11. A space is locally connected at a point x if and only if for every neighbourhood N of x, the component of N containing x is a (R) neighbourhood of x. 12. Show that every path connected space is connected. Is the converse true ? (U) Justify your answer. Suppose (X, τ) be a space and $Y \in \tau$. Prove that a subset B of Y is 13. (R) open in Y if and only if it is open in X. 14. Prove that every T_3 space is T_2 but the converse is not true. (U) Prove that normality is a weakly hereditary property. 15. (U) 16. If a space is second countable then prove that every open cover of it has a (R) countable subcover. 17. Show that closed subspace of compact space is compact. (U) Let X be a non empty set and $\mathscr{T} = \{G \subset X : X - G \text{ is }$ 18. (U) countable $\} \cup \{\phi\}$. Prove that \mathscr{T} is a topology on X. $(2 \times 6 = 12)$ PART C Weights: 5 Answer any 2 questions

19. Define T_4 and prove that all metric spaces are T_4 . (U)

1 of 2

25-03-2025, 11:19

Max. Weights: 30

20.	For a topological space X show that the following are equivalent: (a) X is locally connected. (b) Components of open subsets of X are open in X . (c) X has a base consisting of connected subsets. (d) For every $x \in X$ and every neighbourhood N of x there exists a connected open neighbourhood M of x such that $M \subset N$.	(U)
21.	Establish three equivalent conditions for a topological space \mathscr{T} to have a base $\mathscr{B}.$	(U)
22.	(a) Prove that every continuous real valued function on a compact space is bounded and attains its extrema.(b) Prove that continuous image of a compact space is compact.	(U)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.	
----	----------------------------	----	-----------	-----------	--

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;