MSc DEGREE END SEMESTER EXAMINATION- MARCH 2025

SEMESTER 4 : MATHEMATICS

COURSE : 21P4MATTEL17 : DIFFERENTIAL GEOMETRY

(For Regular - 2023 Admission and Supplementary 2022/2021 Admissions)

Duration : Three Hours

Max. Weights: 30

	PART A Answer any 8 questions	Weight: 1					
1.	Sketch the level sets $f^{-1}(c)$ for $n=0,1,2$, where $f(x_1,\ldots,x_{n+1})=x_{n+1}$ and $c=-1,0,1,2$	(A, CO 1)					
2.	Sketch the vector field on $\mathbb{R}^2: \mathbb{X}(p) = (p, X(p))$ where $X(x_1, x_2) = (0, 1)$	(A, CO 1)					
3.	Show that parallel vector fields form vector space.	(U)					
4.	Define parametrization of a segment of the plane curve C containing $p.$	(U, CO 3)					
5.	Define geodesic.	(R, CO 2)					
6.	Define Fermi parallel vector field.	(R, CO 2)					
7.	Describe the graphs and level sets(level curves) of $\ f(x_1,x_2)=x_1^2-x_2^2.$	(U, CO 1)					
8.	$L_p(\overline{v}).~\overline{v}$ represents which property of the surface.	(An, CO 4)					
9.	Let S be an $n-$ surface in \mathbb{R}^{n+1} and let $f:S o \mathbb{R}^k.$ Then write the characterization for $\ f$ to be smooth.	(U, CO 4)					
10.	Find the length of the parametrized curve $lpha(t)=(t^2,t^3),I=[0,2]$	(A, CO 3) (1 x 8 = 8)					
	PART B						
	Answer any 6 questions	Weights: 2					
11.	Write a short note on the parametrized surface of the revolution.	(A, CO 4)					
12.	Compute $ abla_v f$ where $f(q) = q \cdot q$, $\mathbf{v} = (p, v)$.	(A, CO 3)					
13.	Let S be an n -surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbb{N} . Let $p \in S$ and $v \in S_p$. Prove that for every parametrized curve $\alpha : I \to S$, with $\dot{\alpha}(t_0) = v$ for some $t_0 \in I$, $\ddot{\alpha}(t_0) \cdot \mathbb{N}(p) = L_P(v) \cdot v$.	(A, CO 3)					
14.	Find the Gaussian curvature of $arphi(t, heta)=(\cos heta,\sin heta,t).$	(A, CO 4)					
15.	Show that the great circles are geodesics in the $2-$ sphere.	(A, CO 2)					
16.	Let S denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius $r > 0$ in \mathbb{R}^3 . Show that α is a geodesic of S if and only if α is of the form $\alpha(t) = (r\cos(at+b), r\sin(at+b), ct+d)$ for some $a, b, c, d \in \mathbb{R}$.	(A, CO 2)					
17.	Let U be an open set in \mathbb{R}^{n+1} . \mathbb{X} be a smooth vector field on U . Suppose $lpha:I o U$ is an integral curve of \mathbb{X} with $lpha(0)=lpha(t_0)$ for some $t_0\in I,\ t_0 eq 0$. Show that $lpha$ is periodic.	(A, CO 1)					
18.	Show that the graph of any function $f:\mathbb{R}^n o\mathbb{R}$ is a level set for some function $F:\mathbb{R}^{n+1} o\mathbb{R}$	(A, CO 1)					
		(2 x 6 = 12)					
	PART C						
	Answer any 2 questions	Weights: 5					
10	Let U be an energy set in \mathbb{D}^{n+1} and let $f:U \to \mathbb{D}$ be smooth. Let $n \in U$ be a	$(\Lambda \subset (1)$					

19. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a (A, CO 1) regular point of f, and let c = f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.

20. Let η be the 1-form on $\mathbb{R}^2 - \{0\}$ defined by $\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2.$ Prove that for $\alpha : [a, b] \to \mathbb{R}^2 - \{0\},$ (A, CO 3)

any closed piecewise smooth parametrized curve in $\mathbb{R}^2-\{0\}$, $\int\limits_lpha \eta=2\pi k$

for some integer k.

- 21. Find the Gaussian curvature of $\varphi(t, \theta) = (t \cos \theta, t \sin \theta, \theta)$. (A, CO 4)
- 22. State and prove the existence and uniqueness of maximal geodesics. (A, CO 2)

(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Perceive the ideas of graphs and level sets, vector fields, the tangent space, surfaces, vector fields on surfaces, orientation.	U	1, 2, 7, 17, 18, 19	12
CO 2	Explain the fundamentals of the Gauss map, geodesics, and parallel transport.	А	5, 6, 15, 16, 22	11
CO 3	Summarize the ideas of the Weingarten map, the curvature of plane curves, arc length, and line integrals.	An	4, 10, 12, 13, 20	11
CO 4	Estimate the curvature of surfaces	E	8, 9, 11, 14, 21	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;