25U622

Reg. No

B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2025

SEMESTER 6 : MATHEMATICS

COURSE : 19U6CRMAT10 : COMPLEX ANALYSIS

(For Regular 2022 Admission and Supplementary 2021/2020/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A

Answer any 10 (2 marks each)

- 1. Define simple arc.
- 2. Explain the convergence of an improper integral.
- 3. Write the coefficient of z^{2n} in the Taylor series expansion of $\sin z$.
- 4. Classify the singularities of $\frac{1}{e^{1/z}}$.
- 5. Discuss the convergence of the series $\sum \cos(i/n)$.
- 6. Obtain the Taylor series of e^z about z = 1.
- 7. State Cauchy-Goursat theorem.
- 8. Discuss the existence of $\lim_{z \to 0} \frac{z}{\overline{z}}$.
- 9. State Jordan cuve theorem.
- 10. Use definition to evaluate f'(0), where $f(z) = \bar{z}$.
- 11. Give an example of function which has a non isolated singularity.
- ^{12.} Use definition to evaluate f'(0), where $f(z) = |z|^2$.

(2 x 10 = 20)

PART B

Answer any 5 (5 marks each)

- 13. Suppose that $\lim_{z o z_0}f(z)=w_0$ and $\lim_{z o z_0}F(z)=W_0.$ Show that $\lim_{z o z_0}[f(z)-F(z)]=w_0-W_0.$
- 14. Classify all the singularities of $f(z) = \frac{1}{z(e^z-1)}$.
- 15. True or false: Let $z_n = r_n e^{i\theta_n}$ and $z = re^{i\theta}$. Then $z_n \to z$ if and only if $r_n \to r$ and $\theta_n \to \theta$ as $n \to \infty$. Justify.
- 16. State and prove Cauchy's inequality.

^{17.} Evaluate
$$\int\limits_C ar{z} \, dz$$
 when $C: z = e^{i heta} \, (-\pi/2 \le heta \le \pi/2).$

18. Evaluate $\sin^{-1} i$.

^{19.} Prove that
$$\sum\limits_{n=0}^{\infty} z^n = rac{1}{1-z}$$
 whenever $|z| < 1.$

$$^{20.}$$
 Compute the residue of $\,f(z)=rac{1}{z^2(1+z)}$ at $z=0.$

(5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. Evaluate $\int\limits_{|z|=2}rac{5z-2}{z(z-1)}dz.$
- 22. Let f(z) = u + iv be analytic on a domain D. Write Cauchy Riemann equations and use the same to show that f is constant on D, if 2u + 3v = 4 on D.
- 23. Show that the absolute convergence of a series of complex numbers implies the convergence of that series. Is the converse true? Justify.
- 24. Let C denote a positively oriented simple closed contour. If a function f is analytic inside and on C, then prove that $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{C} \frac{f(s)ds}{(s-z)^{n+1}}$. (10 x 3 = 30)