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PART A
Answer any 10 (2 marks each)

1. Define simple arc.

2. Explain the convergence of an improper integral.

3. Write the coefficient of  in the Taylor series expansion of .

4. Classify the singulari�es of .

5. Discuss the convergence of the series .

6. Obtain the Taylor series of  about 

7. State Cauchy-Goursat theorem.

8. Discuss the existence of .

9. State Jordan cuve theorem.

10. Use defini�on to evaluate , where .

11. Give an example of func�on which has a non isolated singularity.

12. Use defini�on to evaluate , where .

PART B
Answer any 5 (5 marks each)

13. Suppose that  and . Show that

.

14. Classify all the singulari�es of .

15. True or false: Let  and . Then  if and only if  and
 as . Jus�fy.

16. State and prove Cauchy's inequality. 

17.
Evaluate  when .

18. Evaluate .

19.
Prove that  whenever .

20.
Compute the residue of   at .
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PART C
Answer any 3 (10 marks each)

21.
Evaluate .

22. Let  be analy�c on a domain . Write Cauchy Riemann equa�ons and use

the same to show that  is constant on , if  on .

23. Show that the absolute convergence of a series of complex numbers implies the
convergence of that series. Is the converse true?  Jus�fy.

24. Let   denote a posi�vely oriented simple closed contour. If a func�on  is analy�c inside

and on  , then prove that .
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