MSc DEGREE END SEMESTER EXAMINATION- MARCH 2025

SEMESTER 4 : MATHEMATICS

COURSE : 21P4MATTEL16 : SPECTRAL THEORY

(For Regular - 2023 Admission and Supplementary 2022/2021Admissions)

Duration : Three Hours

Max. Weights: 30

Daro		
	PART A	
	Answer any 8 questions	Weight: 1
1.	Let A be a compact operator on a Banach space $X.$ Show that every non-zero spectral value of A is an eigen value of $A.$	(A, CO 1)
2.	Let f be a continuous linear functional on a Hilbert space $H.$ Define the representer of $f.$ Show that it is unique.	(A, CO 3)
3.	Let $A\in BL(H)$ and $s(A)$ be the spectrum of $A.$ Show that $k\in S(A)$ if and only if $\overline{k}\in S(A^*).$	(An, CO 4)
4.	Let $A\in BL(H)$, where H is a Hilbert space over $K.$ Show that $(A^*)^*=A$	(A, CO 3)
5.	Show that every non-zero Hilbert space has an orthonormal basis.	(An, CO 2)
6.	Let $\{u_lpha\}$ be an orthonormal basis for $H.$ If $A\in BL(H)$ is unitary, show that $\{A(u_lpha\})$ is also an orthonormal basis of $H.$	(An <i>,</i> CO 4)
7.	If E is an orthogonal subset of non-zero elements of an $ips \; X$, show that E is linearly independent.	(An, CO 2)
8.	Let $X=l^p, 1\leq p\leq\infty$. Let (k_n) be a sequence in K , and let $A(x(1),x(2),\ldots)=(k_1x(1),k_2x(2),\ldots).$ Show that A is compact if and only if $k_n o 0.$	(A, CO 1)
9.	For $A,B\in BL(H)$, where H is a Hilbert space, show that $ AB \leq A B $.	(A, CO 3)
10.	Let $\{u_n:n=1,2,\ldots\}$ be an orthonormal set in a Hilbert space H and let (k_n) be a sequence of scalars. If $\sum_{n=1}^\infty k_n u_n$ converges in H , show that there	(An, CO 2)
	exists $x \in H$ such that $< x, u_n > = k_n$ for $n = 1, 2, \dots$	(1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2
11.	Let $<,>$ be an inner product on a linear space X . For $x\in X$, let $ x $ denote th negative square root of $< x,x>$. Show that the nls $ig(X, ig)$ is uniformly convergence.	
12.	Let X be a reflexive normed linear space. Show that every closed subspace of X	is reflexive. (An, CO
13.	Let A be a compact operator on a Banach space $X.$ Show that $R(A-I)$ is close	1) ed in X. (E, CO 1)
14.	Let $P\in BL(H).$ If P is normal, show that P is an orthogonal projection.	(E,

15. Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. If for $x \in H$, $x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n$, (An, CO where $\{u_{\alpha} :< x, u_{\alpha} \rangle \neq 0\} = \{u_n : n = 1, 2, \ldots\}$, show that $||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$ where $\{u_{\alpha} :< x, u_{\alpha} \rangle \neq 0\} = \{u_n : n = 1, 2, \ldots\}$

CO 4)

	Let H be a Hilbert space. If $A \in BL(H)$, show that there is a unique $E < A(x), y > = < x, B(y) >$, for all $x, y \in H.$		(2 x 6	Ci E
	PART C		(2 × 0	- 12
	Answer any 2 questions		Weig	hts: 5
19.	Show that $A\in BL(H)$ is invertible in $BL(H)$ if and only if A is boun below and the range of A is dense in $H.$	nded	(An	, CO 4
20.	Let $\{u_lpha\}$ be an orthonormal set in a Hilbert space $H.$ Show that $\{u_lpha\}$			
	orthonormal basis for H if and only if for $x \in H$, $ x ^2 = \sum\limits_{n=1}^{\infty} < x, r$	$u_n >$	² (F	, co 2
	where $\{u_lpha:< x, u_lpha> eq 0\}=\{u_n:n=1,2,\ldots\}$		(1	,
	separability of X be dropped? Justify your answer. (b) Let X be a normed linear space and assume that X' is separable.	Show	•	, CO 1
	a bounded sequence in X need not contain a weak convergent subsection state and prove the projection theorem.		е.	
DBE: (State and prove the projection theorem. Questions to Course Outcome Mapping	quenco	e. (E (5 x 2	
)BE: (State and prove the projection theorem.		e. (E	
)BE: (CO	State and prove the projection theorem. Questions to Course Outcome Mapping	quenco	e. (E (5 x 2	2 = 10 Tota
OBE: (CO CO 1	State and prove the projection theorem. Questions to Course Outcome Mapping Course Outcome Description Define different types of convergence of a sequence in a Normed space, Inner product space and Hilbert space ,spectral theory of different types of operators ,to relate weak and strong convergence Explain parallelogram law and its geometrical interpretation, inner product and its geometrical application. Schwarz's inequality	Quenco	e. (E (5 x 2 Questions 1, 8, 12, 13,	Tota Wt.
СО	State and prove the projection theorem. Questions to Course Outcome Mapping Course Outcome Description Define different types of convergence of a sequence in a Normed space, Inner product space and Hilbert space ,spectral theory of different types of operators ,to relate weak and strong convergence Explain parallelogram law and its geometrical interpretation, inner product and its geometrical application, Schwarz's inequality, Pythagoras theorem and its application in geometry,Bessel inequality,	Quenco CL E	e. (E (5 x 2 Questions 1, 8, 12, 13, 21 5, 7, 10, 11,	Tota Wt.

 $\begin{array}{lll} \text{16.} & \text{Let } H=L^2([a,b]) \text{ and } z\in L^\infty([a,b]). \text{ Define } A:H\to H \text{ by } A(x)=xz \text{ for } x\in H.\\ & \text{Show that } A\in BL(H) \text{ and } ||A||=||z||_\infty. \end{array}$

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

analysis etc

(An, CO 3)