B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2025

SEMESTER 6 : MATHEMATICS

COURSE : 19U6CRMAT09 : REAL ANALYSIS - 2

(For Regular 2022 Admission and Supplementary 2021/2020/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A Answer any 10 (2 marks each)

1. Show that a function which is uniformly continuous on an interval is continuous on that interval.

2. Show that the series
$$\sum rac{(-1)^n}{n} |x|^n$$
, converges uniformly in $[-1,1]$.

Discuss the kind of discontinuity, if any, of the function $f(x)= \left\{egin{array}{cc} x-|x| & when \ x
eq 0 \ 2 & when \ x=0 \end{array}
ight.$

4. Discuss the differentiability of the function
$$f(x)=egin{cases} 2, & x\leq 1\ x, & x>1 \end{cases}$$

 ${\rm at} \,\, x=1$

3.

- 5. State and prove the symmetrical property of the Beta function.
- 6. Prove that for any two partitions P_1 and P_2 of [a,b] and for a bounded function f, $L(P_1,f) \leq U(P_2,f)$.
- 7. Define the beta function B(m, n).
- 8. State Cauchy's criterion for uniform convergence.
- 9. When is a partition P^* of [a, b] said to be finer than another partition P of [a, b]?
- 10. State Weierstrass M-test for uniform convergence.
- 11. Define the improper integral $\int_a^\infty f\,dx$, where $x\ge a.$
- 12. Give an example of a function which is not Riemann integrable on \mathbb{R} .

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

^{13.} Show that $\sum \frac{\cos n\theta}{n^p}$ is uniformly and absolutely convergent for all real values of θ , where p > 1.

14. Discuss the differentiability of the function $f(x) = \begin{cases} 2x-3, & 0 \le x \le 2 \\ x^2-3, & 2 < x \le 4 \end{cases}$ at x=2 and x=4.

- 15. Prove that a function which is differentiable at a point is necessarily continuous at that point.
- 16. If n is a positive integer and m>-1, prove that $\int_0^1 x^m (\log x)^n dx = rac{(-1)^n n!}{(m+1)^{n+1}}.$

17. If f and g are bounded and integrable functions on [a, b], such that $f \ge g$, prove that $f^b = f^b$

$$\int_a f\,dx \geq \int_a g\,dx.$$

18. Evaluate $\int_0^a y^4 \sqrt{(a^2-y^2)} dy.$

19. Let
$$f(x) = \begin{cases} rac{1}{2^n}, & when \ rac{1}{2^{n+1}} < x \le rac{1}{2^n}, (n=0,1,2,\ldots) \\ 0 & when \ x = 0 \end{cases}$$
.
Show that $\int_0^1 f \, dx = rac{2}{3}.$

20. Show that the series $\sum (-1)^n \frac{x^2 + n}{n^2}$, converges uniformly in every bounded interval, but does not converge absolutely for any value of x. (5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. Prove that $\Gamma(rac{1}{2})=\sqrt{\pi}$
- 22. Show that if a function f is continuous on a closed interval [a, b] and f(a) and f(b) are of opposite signs, then there exists at least one point $\alpha \in (a, b)$ such that $f(\alpha) = 0$.
- 23. State and prove Darboux's theorem.
- 24. Show that the sequence $\{f_n\}$, where $f_n(x) = x^n$ is uniformly convergent on [0, k], where k < 1 and is pointwise convergent on [0, 1].

(10 x 3 = 30)