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PART A
Answer any 10 (2 marks each)

1. Show that a func�on which is uniformly con�nuous on an interval is con�nuous on that
interval.

2.
Show that the series , converges uniformly  in .

3.
Discuss the kind of discon�nuity, if any, of the func�on 

4.
Discuss the differen�ability of the func�on 

at  

5. State and prove the symmetrical property of the Beta func�on.

6. Prove that for any two par��ons  and  of  and for a bounded func�on  ,

. 

7. Define the beta func�on .

8. State Cauchy's criterion for uniform convergence.

9. When is a par��on  of  said to be finer than another par��on  of ?

10. State Weierstrass M-test for uniform convergence.

11.
Define the improper integral  , where .

12. Give an example of a func�on which is not Riemann integrable on .

PART B
Answer any 5 (5 marks each)

13.
Show  that  is uniformly and absolutely convergent for all real values of , where

.

14.
Discuss the differen�ability of the func�on 

at  and .

15. Prove that a func�on which is differen�able at a point is necessarily con�nuous at that point.

16.
If   is a posi�ve integer and , prove that .

17. If  and  are bounded and integrable func�ons on , such that , prove that

.

18.
Evaluate .
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19. Let .

Show that .

20.
Show that the series , converges uniformly in every bounded interval, but

does not converge absolutely for any value of .

PART C
Answer any 3 (10 marks each)

21. Prove that 

22. Show that if a func�on  is con�nuous on a closed interval  and  and  are of

opposite signs, then there exists at least one point  such that .

23. State and prove Darboux's theorem.

24. Show that the sequence , where  is uniformly convergent on , where

 and is pointwise convergent on .
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