Reg. No

Name

M. Sc DEGREE END SEMESTER EXAMINATION - MARCH 2020 SEMESTER 2 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY COURSE : 16P2CHET05 / 16P2CPHT05 : INORGANIC CHEMISTRY - II (For Regular - 2019 Admission & Supplementary 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (2 marks each)

- 1. Give the d orbital splitting in the triagonal and square pyramidal fields.
- 2. The stability of complexes of Ag^+ with bidentate ligands is generally low compared to that of metals such as Cu^{2+} . Give reason.
- 3. Three bands in the electronic spectrum of [Cr(NH₃)₆]³⁺ are due to the following transitions. Which transition has lowest intensity and why?

a) ${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$ b) ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ and c) ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$

- 4. Though d-d transitions are forbidden transitions, very low intensity transition is observed in metal complexes. Why?
- 5. Discuss how the magnetic susceptibility of ferromagnetic materials vary with temperature
- 6. Substitution reaction in square planar complexes are stereoretentive, why?
- 7. From the following identify the complex having fastest electron transfer during the reduction with $[Cr(H_2O)_6]^{2+}$. Give explanation for your answer. $[Co(NH_3)_5Cl]^{2+}$, $[Co(NH_3)_5Br]^{2+}$, $[Co(NH_3)_5I]^{2+}$
- 8. The base hydrolysis of red isomer of $[Co(tren)(NH_3)(Cl)]^{2+}$ is much more faster the base hydrolysis of purple isomer of $[Co(tren)(NH_3)(Cl)]^{2+}$, Why? (tren = tris(2-amino ethyl) amine)
- 9. Explain linkage isomerism with an example.
- 10. Explain fac and mer isomerism with a suitable example.
- 11. Which of the following are chiral? a) [Cr (ox)₃]³⁻, b) cis- [Rh Cl₂ (NH₃)₄]⁺ c) cis- [Pt Cl₂ (en)] d) [Ru (bipy)₃]²⁺
- 12. Work out the number of unpaired electrons in Ce^{4+} , Yb^{2+} , Gd^{3+} and Tb^{4+} .
- 13. Lanthanides are less prompt to form complexes than d- block elements. Why?

(2 x 10 = 20)

Section B Answer any 5 (5 marks each)

- 14. The stepwise stability constants k_1 and k_2 of ethylene diamine complex for divalent ions show a regular increase from Mn to Zn, but for k_3 , Cu²⁺ shows striking difference. Explain the reason
- 15. Arrange the following complexes in the increasing order of energies of charge transfer bands with explanation.

 $[CoCl_4]$, $[CoBr_4]$ and $[Col_4]$

16. The absorption spectrum of $(CoF_6)^{3-}$ shows a single broad band which splits into two distinct peaks. Explain.

- 17. Solutions of $[Cr(H_2O)_6]^{3+}$ ions are pale blue green. But the chromate ion CrO_4^{2-} is an intense yellow. Characterise the origin of transition and explain the relative intensities.
- 18. Explain the associative mechanism of octahedral substitution. Derive the rate expression.
- 19. Explain Marcus theory. How it is used for studying the rate of self exchange reaction?
- 20. Discuss the resolution method of chiral metal complexes with a suitable example.
- 21. Explain Symbiosis with suitable examples.

(5 x 5 = 25)

Section C Answer any 2 (15 marks each)

- 22. Apply the MO theory for the complex $[Co(NH_3)_6]^{3+}$ and construct the Molecular orbital energy level diagram.
- 23. a) Discuss the selection rule for electronic transition in Metal complexes. Discuss the relaxations to this selection rules.
 b) How does d-d transition differ from CT transition on the basis of nature and Intensity? Explain

b) How does d-d transition differ from CT transition on the basis of nature and Intensity? Explain the reason for the difference.

- 24. (a) What is trans effect? Discuss the different theories proposed for explaining the trans effect.
 (b) Using trans effect series as a guide, outline the synthesis of geometrical isomers of [Pt(Cl) (Br)(Py)(NH₃))] starting from [Pt(Cl)₄]²⁻ and other ligands.
- 25. Compare the coordination chemistry and complex forming ability of lanthanides with transition elements

(15 x 2 = 30)