Reg. No

M.Sc. DEGREE END SEMESTER EXAMINATION- NOVEMBER 2024

SEMESTER 1 : MATHEMATICS

COURSE : 24P1MATT03 : REAL ANALYSIS

(For Regular 2024 Admission and Improvement/Supplementary 2023/2022/2021 Admissions)

ion : Three Hours	Max. Weights: 30						
PART A							
Answer any 8 questions	Weight: 1						
Prove that $\lim_{n o\infty}(1+rac{1}{n})^n=e.$	(A)						
If $f_1, f_2 \in \mathscr{R}(lpha)$ on [a,b], then prove that $f_1 + f_2 \in \mathscr{R}(lpha)$ on $[a,b].$	(U)						
What is the Riemann-Stieltjes integral, and how does it differ from the Riemann integral?	(U)						
Prove or disprove: Every monotone function is a function of bounded variation on $\left[a,b ight] .$	(A)						
State Stone Weierstrass theorem.	(An)						
Show that $\lim_{x o 0} rac{b^x-1}{x}=b$	(A)						
Show that a convergent series of continuous functions may have a discontinuous sum.	(An)						
Show that there exists an everywhere discontinuous limit function which not Riemann integrable.	is (A)						
Define a partition and when is a function f said to be of bounded variation.	(A)						
Prove that the set of discontinuities of a monotone function is countable	. (An) (1 x 8 = 8)						
PART B							
Answer any 6 questions Weights: 2							
If $\{f_n\}$ is a sequence of continuous functions on E and if $f_n o f$ uniformly on E , prove that f is continuous on E .	(R)						
Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{2n!}{(n!)^2} z^n$	(A)						
Show that the function f defined on $[0,1]$							
	(A)						
functions.	(R)						
If f is continous on $[0,1]$ and if $\int_0^1 x^n f(x) dx = 0$ for $n=0,1,2,\ldots$, then show that $f(x)=0$ on $[0,1].$	(A)						
Prove that f is Riemann Stieltjes integrable on [a,b] iff for $\epsilon > 0$, there exist partition P of [a,b] such that $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon$.	(R)						
	PART A Answer any 8 questions Prove that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$. If $f_1, f_2 \in \mathscr{R}(\alpha)$ on [a,b], then prove that $f_1 + f_2 \in \mathscr{R}(\alpha)$ on $[a,b]$. What is the Riemann-Stieltjes integral, and how does it differ from the Riemann integral? Prove or disprove: Every monotone function is a function of bounded variation on $[a, b]$. State Stone Weierstrass theorem. Show that $\lim_{x\to 0} \frac{b^x-1}{x} = b$ Show that a convergent series of continuous functions may have a discontinuous sum. Show that there exists an everywhere discontinuous limit function which not Riemann integrable. Define a partition and when is a function f said to be of bounded variation. Prove that the set of discontinuities of a monotone function is countable PART B Answer any 6 questions If $\{f_n\}$ is a sequence of continuous on E . Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{2n!}{(n!)^2} z^n$ Show that the function f defined on $[0,1]$ by $f(x) = \begin{cases} 1 & ; if x \text{ is rational} \\ 0 & ; if x \text{ is rational} \\ 0 & ; if x \text{ is irrational} \\ is not integrable on [0,1]State and prove Cauchy criterion for uniform convergence of a series offunctions.If f is continous on [0,1] and if \int_0^1 x^n f(x) dx = 0 for n = 0, 1, 2, \dots,then show that f(x) = 0 on [0,1].$						

17. Let f be a function of bounded variation on [a,b]. Let the variation function V(x) defined by $V(x) = \begin{cases} v_f(a,x) & \text{if } x \in (a,b] \\ 0 & \text{if } x = a \end{cases}$ (A) Then prove that : 1) V is increasing function on [a,b]2) V - f is an increasing function on [a,b]18. Is the function $f(x) = \sqrt{x} \sin(1/x)$ if $x \neq 0$, f(0) = 0 is of bounded variation on [0,1](A)

(2 x 6 = 12)

PART C

Answer any 2 questions Weights: 5

- 19. State and prove the additive property of total variation. (An, CO 1)
- 20. Let $f \in \mathbb{R}$ on [a,b]. For $a \le x \le b$, put $F(x) = \int_a^x f(t) dt$. Then prove that F is continuous on [a,b]; furthermore, if f is continuous at a point x_0 of [a,b], (R) then prove that F is differentiable at x_0 and $F'(x_0) = f(x_0)$

21. Suppose
$$\sum_{n=0}^{\infty} c_n x^n$$
 converges for $|x| < R$, and define
 $f(x) = \sum_{n=0}^{\infty} c_n x^n$ $(|x| < R)$, then prove that $\sum_{n=0}^{\infty} c_n x^n$ converges
uniformly on $[-R + \epsilon, R - \epsilon]$, no matter which $\epsilon > 0$ is chosen and the
(U)

uniformly on $[-R + \epsilon, R - \epsilon]$, no matter which $\epsilon > 0$ is chosen and the function f is continuous and differentiable in (-R, R) with

$$f'(x)=\sum_{n=0}^\infty nc_nx^{n-1}.$$

22. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded?

(5 x 2 = 10)

со	Course Outcome Description	CL	Questions	Total Wt.	
CO 1	Explain the functions of bounded variations, rectifiable curves, paths and equivalence of paths	U	19	5	

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;