Reg. No.....

M. Sc. DEGREE END SEMESTER EXAMINATION - NOVEMBER 2024

SEMESTER 1 : Computer Science (Artificial Intelligence) COURSE: 24P1CAIT04 : MATHEMATICS FOR COMPUTATIONAL INTELLIGENCE

(For Regular 2024 Admission)

Time: Three Hours

Max. Weightage: 30

PART-A

Weight : 1

24P1045

Answer any 8 Questions

1. Consider the matrices

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$$

Prove that $(A + B)^2 \neq A^2 + 2AB + B^2$.

- 2. Prove that $(\mathbb{R}\setminus\{0\}, \cdot)$ is an Abelian group.
- 3. Define Manhattan norm and Euclidean norm on \mathbb{R}^n .
- 4. Define distance and metric.
- 5. Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ using Laplace expansion.
- 6. Write any 4 properties of determinant and trace of a square matrix.
- 7. Define:
 - i. Difference Quotient
 - ii. Derivative
 - iii. Taylor polynomial
 - iv. Taylor series
- 8. Compute the Taylor polynomial T_6 of $f(x) = x^4$ at $x_0 = 1$.
- 9. Define convex and concave function with an example.
- 10. Consider whether the following statements are true or false:
 - i. The product of any two convex functions is convex.
 - ii. The maximum of any two convex functions is convex.

(1 x 8 = 8)

PART- B

Weights : 2

Answer any 6 Questions

11. Compute the following matrix products

i. $\begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}$

24P1045

ii.
$$\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

12. Determine whether the matrix given below is invertible and if so, then find the inverse.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 4 & 5 \\ 6 & 7 & 7 \end{bmatrix}$$

13. Consider \mathbb{R}^2 with $\langle \cdot, \cdot \rangle$ defined for all *x* and *y* in \mathbb{R}^2 as

$$\langle x, y \rangle = x^T \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} y$$

Is $\langle \cdot, \cdot \rangle$ an inner product?

14. Compute the distance between

$$x = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad y = \begin{bmatrix} -1\\-1\\0 \end{bmatrix}$$

using

i.
$$\langle x, y \rangle = x^T y$$

ii.
$$\langle x, y \rangle = x^T A y$$
, $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

15. Find the eigenvalues and eigenvectors of the 2 × 2 matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$.

- 16. Consider $f(x_1, x_2) = x_1^2 + 2x_2$, where $x_1 = \sin t$ and $x_2 = \cos t$, then find $\frac{df}{dt}$.
- 17. i. Define partial derivative.
 - ii. Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for $f(x, y) = (x + 2y^3)^2$.

18. Consider the function $f(x) = \frac{1}{2}x^T A x + b^T x + c$, where A is strictly positive definite, which means that it is invertible. Derive the convex conjugate of f(x).

Hint: Take the gradient of an appropriate function and set the gradient to zero.

 $(2 \times 6 = 12)$

PART- C Answer any 2 Questions

Weights : 5

19. Using Gaussian elimination, find all solutions of the inhomogeneous equation system Ax = b with

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

24P1045

20. Consider \mathbb{R}^3 with inner product

$$\langle x, y \rangle = x^T \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} y.$$

Furthermore, we define e_1, e_2, e_3 as the standard/canonical basis in \mathbb{R}^3 .

Determine the orthogonal projection $\pi_U(e_2)$ of e_2 onto $U = span[e_1, e_3]$.

Hint: Orthogonality is defined through the inner product.

21. Compute all eigenspaces of

$$A = \begin{bmatrix} 0 & -1 & 1 & 1 \\ -1 & 1 & -2 & 3 \\ 2 & -1 & 0 & 0 \\ 1 & -1 & 1 & 0 \end{bmatrix}.$$

22. Compute the derivative $\frac{df}{dx}$ of the following function using the chain rule.

 $f(z) = \sin(z), \quad z = Ax + b, \quad A \in \mathbb{R}^{E \times D}, \quad x \in \mathbb{R}^{D}, \quad b \in \mathbb{R}^{E}$

Where $sin(\cdot)$ is applied to every element of z.

(5 x 2 = 10)