B.Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024

SEMESTER 3 : MATHEMATICS (CORE COURSE) FOR B.Sc. COMPUTER APPLICATION COURSE : 19U3CRCMT4 : VECTOR CALCULUS, TRIGONOMETRY AND MATRICES

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021/2020/2019 Admissions)

Time : Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

1. Separate into real and imaginary parts the expression cot(x+iy).

2. Find the rank of $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$

3. Determine a so that the vector $\overrightarrow{v}=(z+3y) \pmb{i} + (x+2z) \, \pmb{j} + (x+az) \pmb{k} \ is \ solenoidal.$

- 4. If $\overrightarrow{r}=xi+yj+zk$, show that curl $\overrightarrow{r}=\overset{
 ightarrow}{0}$
- If **F**=3xy**i**-y²**j**, evaluate $\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$, where **C** is the arc of the parabola y=2x² from (0,0) to (1,2).
- 6. Prove that $\cosh 2x = \cosh^2 x + \sinh^2 x$.
- 7. Show that every square matrix is expressible as the sum of a Hermitian matrix and a skew-Hermitian matrix.
- 8. Prove that $\cosh 3x = 4 \cosh^3 x 3 \cosh x$.
- 9. Using divergence theorem evaluate $\iint_S \mathbf{r} \cdot \hat{n} dS$ where S is a closed surface and \overrightarrow{r} is a position vector.
- 10. Find the total workdone in moving a particle in a force field given by $\mathbf{F}=3xy\mathbf{i}-5z\mathbf{j}+10x\mathbf{k}$ along the curve $x=t^2+1,y=2t^2,z=t^3$ from t=1 to t=2
- 11. Find grad ϕ when ϕ is given by $\phi = x^3 + y^3 + 3xyz$.
- 12. Find the rank of $\begin{bmatrix} 4 & 1 & 2 \\ -3 & 2 & 4 \\ 8 & -1 & -2 \end{bmatrix}$

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Find the inverse of A = $\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ by Guass Jordan method.
- 14. Evaluate $\iint_s F \cdot \hat{n} ds$, where F=18zi-12j+3yk and S is the surface of the plane 2x+3y+6z=12 in the first octant.
- 15. Evaluate the surface integral $\iint_S curl F$. $\widehat{n}dS$ by transforming it into a line integral ,S being that part of the surface of the paraboloid z=1-x²-y², for which z≥0 and F=yi+zj+xk.

1 of 2

- Find the unit vector normal to the surface $x^2+2y^2+z^2=7~at~ig(1,~-1,~2ig)$
- 17. Factorise x^6+1 into real factors.
- If $\sin \ (heta + i\phi) = an \ (x+iy)$, show that $rac{ an \ heta}{ an \ h \ \phi} = rac{\sin \ 2x}{\sinh \ 2y}$ 18.
- 19. Solve the system of equations by matrix method. x + y + z = 8, x - y + 2z = 6, 3x + 5y - 7z = 14.
- In what direction from (3,1,-2) is the directional derivative of $\phi = x^2y^2z^4$ maximum and what 20. is its magnitude?

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- 21. Resolve into factors the expression $x^8-2x^4\cos 60^{\circ}+1$.
- Verify Green's theorem in the plane for $\oint_C \left(xy \; dx + \; x^2 \; dy \;
 ight)$, where C is the curve enclosing the region bounded by the parabola $y=x^2$ and the line y=x.
- If $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ are vector functions then show that 23. $abla imes \left(\overrightarrow{A} imes \overrightarrow{B}
 ight) \ = \ \left(
 abla . \overrightarrow{B}
 ight) \overrightarrow{A} \ - \left(
 abla . \overrightarrow{A}
 ight) \overrightarrow{B} \ + \left(\overrightarrow{B} .
 abla
 ight) \overrightarrow{A} \ - \left(\overrightarrow{A} .
 abla
 ight) \overrightarrow{B}$
- Verify Cayley-Hamilton Theorem for the matrix A = $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Hence compute A^{-1} .

 $(10 \times 3 = 30)$