M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024

SEMESTER 3: MATHEMATICS

COURSE: 21P3MATT15: MULTIVARIATE CALCULUS

(For Regular 2023 Admission and Supplementary 2022/2021 Admissions)

Duration : Three Hours Max. Y					
PART A					
Answer any 8 questions Weight: 1					
1.	State the inverse function theorem	(U, CO 3)			
2.	Find the Laplace transform of $\cosh at$	(A, CO 1)			
3.	Show that $f_\omega = x dy + y dx$ then $\int_\gamma \omega = 0~$ for every 1- surface closed curve γ	· (A)			
4.	Give an example of an orthogonal set of functions.	(R, CO 1)			
5.	Define a convex set.	(R, CO 3)			
6.	Show that the components of $f^\prime(c)$ are the dot product of the successive rows of the Jacobian matrix with the vector v .	(A, CO 2)			
7.	Write different types of Integral Transforms	(A, CO 1)			
8.	Explain the anticommutativity of differential forms.	(U, CO 4)			
9.	Show that total derivative of a linear function is the function itself.	(A, CO 2)			
10.	Define basic k-forms	(U, CO 4) (1 x 8 = 8)			
PART B					
Answer any 6 questions Weights: 2					
11.	If S is convex and if all the partial derivatives are bounded on S , then show that ${f f}$ satisfies a Lipschitz condition on S .	(A, CO 3)			
12.	Derive the exponential form of the Fourier Integral Theorem.	(A, CO 1)			
13.	If f is differentiable at c , then prove that f is continuous at c .	(A, CO 2)			
14.	Integrate $\int\limits_{I^2} e^{(x+y)} dx dy$ where $I^2 = [0,1] imes [0,2].$	(An, CO 4)			
15.	Find $J_f(r, heta,z)$ where $f(r, heta,z)$ is defined by $x=rcos heta,y=rsin heta,z=z$	(An, CO 4)			
16.	Find the gradient vector $ abla f(x,y,z)$ at the point $(1,1,1)$ of the function $f(x,y,z)=x^2+y^3+z^5$.	(A, CO 2)			
17.	Verify that the mixed partial derivatives $D_{1,2}{f f}$ and $D_{2,1}{f f}$ are equal where ${f f}(x,y)=\log(x^2+y^2), (x,y)=(0,0).$	(A, CO 3)			
18.	Prove that $rac{x^2}{2}=\pi x-rac{\pi^2}{3}+2\sum_{n=1}^{\infty}rac{\cos nx}{n^2}$ if $0\leq x\leq 2\pi.$	(A, CO 1)			
		$(2 \times 6 = 12)$			
PART C					

Answer any 2 questions

a)Derive the matrix form of Chain rule b)Let $f(x,y)=\begin{cases} xy\sinrac{1}{x^2+y^2} & if \quad (x,y)
eq (0,0) \\ 0 & if \quad (x,y)=(0,0) \end{cases}$. Compute the gradient vector $\nabla f(x,y)$ at those points (x,y) in R^2 where it exists. 19. (A, CO 2)

Weights: 5

- 20. Suppose E is an open set in R^n, T is a C'-mapping of E into an open set $V\subset R^m$. Let ω and λ be k- and m- forms in V respectively. Then prove that (a) $(\omega+\lambda)_T=\omega_T+\lambda_T$ if k=m; (An, CO 4) (b) $(\omega\wedge\lambda)_T=\omega_T\wedge\lambda_T$; (c) $d(\omega_T)=(d\omega)_T$ if ω is of class C' and T is of class C''.
- 21. Let B=B(a;r) be an n-ball in R^n , let ∂B denote its boundary, $\partial B=x:||x-a||=r$, and let $\bar B=B\cup\partial B$ denote its closure. Let $f=(f_1,\ldots,f_n)$ be continuous on B, and assume that all the partial derivatives $D_jf_i(x)$ exist if $x\in B$. Assume further that $f(x)\neq f(a)$ if $x\in\partial B$ and that the Jacobian determinant $J_f(x)\neq 0$ for each x in B. Then prove that f(B), the image of B under B, contains an n-ball with center at B.
- 22. State and prove the convolution theorem for Fourier Transforms (A, CO 1) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain Weirstras theorem, otherforms of Fourierseries, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.	А	2, 4, 7, 12, 18, 22	12
CO 2	Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of the complex- valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.	А	6, 9, 13, 16, 19	11
CO 3	Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a a sufficient condition for differentiability.	An	1, 5, 11, 17, 21	11
CO 4	Explain the Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, and Stoke's theorem.	An	8, 10, 14, 15, 20	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

2 of 2 23-10-2024, 09:21