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M. Sc. DEGREE END SEMESTER EXAMINATION ‐ OCTOBER 2024

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT14 : ADVANCED COMPLEX ANALYSIS

(For Regular 2023 Admission and Supplementary 2022/2021 Admissions)

Dura�on : Three Hours Max. Weights: 30

PART A

1. Let  be an open connected subset of . For any  in  there is a
sequence of polynomials that converges to  in  then show that for
any  in  and any closed rec�fiable curve  in , 

(A, CO 2)

2. State  Bohr‐ Mollerup theorem by defining the Gamma func�on (An)

3. Find the sets  for which  is an open annulus (An)

4. Prove that an analy�c func�on with constant imaginary part is constant (An, CO 3)

5. State Schwarz reflec�on principle (R)

6. If  is an analy�c func�on the curves of the family
 and then show that curves of the family  cut

orthogonally, where  and  are varying constants.
(A, CO 3)

7. State Hadamard factoriza�on theorem. (E)

8. Find the order of (A)

9. Define genus of an en�re func�on (U)

10. If  for any  in  such that  for all  in  there is a func�on 
in  such that . Then show that  is homeomorphic to
the unit disk, where  is an open connected subset of .

(A)

PART B

11. If  is a regular func�on of  in a domain , then show that 
(An, CO 3)

12. Show that  and  are homeomorphic (A, CO 2)

13. Show that  is a closed subalgebra of  that contains every
ra�onal func�on with a pole in 

(A, CO 2)

14. Suppose  is equicon�nuous at each point of ; then prove
that  is equicon�nuous over each compact subset of 

(A)

15. State and prove Jensen's Formula (U, CO 4)

16. Let  be a sequence in  such that  and  for all
. If  is any sequence of integers such that

 for all  then 

converges in . The func�on  is an en�re func�on with zeros  only at
the points . If  occurs in the sequence  exactly  �mes then
prove that  has a zero at  of mul�plicity . Furthermore, if

 then  will be sa�sfied.

(R)
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(2 x 6 = 12)
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17. If  is a sequence in  and  belongs to  such that
  then prove that   is analy�c and  for each

integer .
(An, CO 1)

18. Let  and suppose that  is a con�nuous
func�on such that both  and  are harmonic. Show that

 for all in .
(A, CO 3)

PART C

19. Let  and suppose that  is a
con�nuous func�on. Then show that there is a con�nuous func�on

 such that
for  in 

 is harmonic in .

(U, CO 3)

20. Prove that a set ) is normal iff the following two condi�ons
are sa�sfied:
(a) For each  in ,  has compact closure in ;
(b) is equicon�nuous at each point of .

(An, CO 1)

21. Let  be a region and let  be a sequence of dis�nct points in  with no
limit point in ; and let  be a sequence of integers. Then prove
that there is an analy�c func�on  defined on  whose only zeros are at
the points  ; Furthermore,  is a zero of mul�plicity .

(R)

22. Let  be a region such that . If  is a
con�nuous func�on which is analy�c on  and if  is real for  in ,
then prove that there is an analy�c func�on  such that

 for  in .

(U, CO 2)

OBE: Ques�ons to Course Outcome Mapping

CO Course Outcome Descrip�on CL Ques�ons
Total
Wt.

CO 1
Explain the space of func�ons, Riemann mapping theorem and
Weierstrass factoriza�on theorem.

U 17, 20 7

CO 2

Analyze Runge’s Theorem, Simple connectedness, Mi�agLeffler’s
theorem, Analy�c con�nua�on and Riemann surfaces, Schwartz
Reflec�on Principle, Analy�c con�nua�on along a path,
Mondromy theorem.

An 1, 12, 13, 22 10

CO 3
Interpret Harmonic func�ons, Basic proper�es of harmonic
func�ons and Harmonic func�ons on the disk.

U
4, 6, 11, 18,
19

11

CO 4
Perceive En�re func�ons, Jensen’s formula, the genus and order
of an en�re func�on, Hadamard Factoriza�on theorem.

U 15 2

Cogni�ve Level (CL): Cr ‐ CREATE; E ‐ EVALUATE; An ‐ ANALYZE; A ‐ APPLY; U ‐ UNDERSTAND; R ‐ REMEMBER;
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Answer any 2 ques�ons Weights: 5
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