Max. Weights: 30

M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT14 : ADVANCED COMPLEX ANALYSIS

(For Regular 2023 Admission and Supplementary 2022/2021 Admissions)

Duration : Three Hours

	PART A Answer any 8 questions	Weight: 1
1.	Let G be an open connected subset of C . For any f in $H(G)$ there is a sequence of polynomials that converges to f in $H(G)$ then show that for any f in $H(G)$ and any closed rectifiable curve γ in G , $\int_{\gamma} f = 0$	(A, CO 2)
2.	State Bohr- Mollerup theorem by defining the Gamma function	(An)
3.	Find the sets K_n for which G is an open annulus	(An)
4.	Prove that an analytic function with constant imaginary part is constant	(An, CO 3)
5.	State Schwarz reflection principle	(R)
6.	If $\mathbf{w} = u(x, y) + iv(x, y)$ is an analytic function the curves of the family $u(x, y) = c_1$ and then show that curves of the family $v(x, y) = c_2$ cut orthogonally, where c_1 and c_2 are varying constants.	(A, CO 3)
7.	State Hadamard factorization theorem.	(E)
8.	Find the order of $f(z)=e^{e^z}$	(A)
9.	Define genus of an entire function	(U)
10.	If for any f in $H(G)$ such that $f(z) \neq 0$ for all z in G there is a function g in $H(G)$ such that $f(z) = [g(z)]^2$. Then show that G is homeomorphic to	(A)
	the unit disk, where G is an open connected subset of C .	(1 x 8 = 8)
	PART B	
	PART B Answer any 6 questions	Weights: 2
11.		Weights: 2 (An, CO 3)
11. 12.	Answer any 6 questions If ${f f}({f z})=m u+m im v$ is a regular function of z in a domain D , then show that	_
	Answer any 6 questions If ${f f}({f z})={m u}+i{m v}$ is a regular function of z in a domain D , then show that ${m abla}^2({m u}^p)={m p}({m p}-{f 1}){m u}^{p-2} {m f}'({m z}) ^2$	(An, CO 3)
12.	Answer any 6 questions If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + i\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2(\mathbf{u}^p) = \mathbf{p}(\mathbf{p}-1)\mathbf{u}^{p-2} \mathbf{f}'(\mathbf{z}) ^2$ Show that \mathbb{C} and $D = \{z/ z \le 1\}$ are homeomorphic Show that $B(E)$ is a closed subalgebra of $C(K, \mathbb{C})$ that contains every	(An, CO 3) (A, CO 2)
12. 13.	Answer any 6 questions If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + i\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2(\mathbf{u}^p) = \mathbf{p}(\mathbf{p}-1)\mathbf{u}^{p-2} \mathbf{f}'(\mathbf{z}) ^2$ Show that \mathbb{C} and $D = \{z/ z \le 1\}$ are homeomorphic Show that $B(E)$ is a closed subalgebra of $C(K, \mathbb{C})$ that contains every rational function with a pole in E Suppose $\mathscr{F} \subset C(G, \Omega)$ is equicontinuous at each point of G ; then prove	(An, CO 3) (A, CO 2) (A, CO 2)
12. 13. 14.	Answer any 6 questions If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + i\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2(\mathbf{u}^p) = \mathbf{p}(\mathbf{p}-1)\mathbf{u}^{\mathbf{p}-2} \mathbf{f}'(\mathbf{z}) ^2$ Show that \mathbb{C} and $D = \{z/ z \leq 1\}$ are homeomorphic Show that $B(E)$ is a closed subalgebra of $C(K, \mathbb{C})$ that contains every rational function with a pole in E Suppose $\mathscr{F} \subset C(G, \Omega)$ is equicontinuous at each point of G ; then prove that \mathscr{F} is equicontinuous over each compact subset of G State and prove Jensen's Formula Let $\{a_n\}$ be a sequence in \mathbb{C} such that $lim a_n = \infty$ and $a_n \neq 0$ for all	(An, CO 3) (A, CO 2) (A, CO 2) (A)
12. 13. 14. 15.	Answer any 6 questions If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + i\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2(\mathbf{u}^p) = \mathbf{p}(p-1)\mathbf{u}^{p-2} \mathbf{f}'(z) ^2$ Show that \mathbb{C} and $D = \{z/ z \leq 1\}$ are homeomorphic Show that $B(E)$ is a closed subalgebra of $C(K, \mathbb{C})$ that contains every rational function with a pole in E Suppose $\mathscr{F} \subset C(G, \Omega)$ is equicontinuous at each point of G ; then prove that \mathscr{F} is equicontinuous over each compact subset of G State and prove Jensen's Formula Let $\{a_n\}$ be a sequence in \mathbb{C} such that $lim a_n = \infty$ and $a_n \neq 0$ for all $n \geq 1$. If $\{p_n\}$ is any sequence of integers such that $\sum_{n=1}^{\infty} (\frac{r}{ a_n })^{p_n+1} \leq \infty$ for all $r \geq 0$ then $f(z) = \prod_{n=1}^{\infty} E_{p_n}(z/a_n)$	(An, CO 3) (A, CO 2) (A, CO 2) (A) (U, CO 4)
12. 13. 14. 15.	Answer any 6 questions If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + i\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2(\mathbf{u}^p) = p(p-1)\mathbf{u}^{p-2} \mathbf{f}'(z) ^2$ Show that \mathbb{C} and $D = \{z/ z \leq 1\}$ are homeomorphic Show that $B(E)$ is a closed subalgebra of $C(K, \mathbb{C})$ that contains every rational function with a pole in E Suppose $\mathscr{F} \subset C(G, \Omega)$ is equicontinuous at each point of G ; then prove that \mathscr{F} is equicontinuous over each compact subset of G State and prove Jensen's Formula Let $\{a_n\}$ be a sequence in \mathbb{C} such that $lim a_n = \infty$ and $a_n \neq 0$ for all $n \geq 1$. If $\{p_n\}$ is any sequence of integers such that $\sum_{n=1}^{\infty} (\frac{r}{ a_n })^{p_n+1} \leq \infty$ for all $r \geq 0$ then $f(z) = \prod_{n=1}^{\infty} E_{p_n}(z/a_n)$ converges in $H(\mathbb{C})$. The function f is an entire function with zeros only at the points a_n . If z_0 occurs in the sequence $\{a_n\}$ exactly m times then	(An, CO 3) (A, CO 2) (A, CO 2) (A) (U, CO 4)
12. 13. 14. 15.	Answer any 6 questions If $\mathbf{f}(\mathbf{z}) = \mathbf{u} + i\mathbf{v}$ is a regular function of z in a domain D , then show that $\nabla^2(\mathbf{u}^p) = \mathbf{p}(p-1)\mathbf{u}^{p-2} \mathbf{f}'(z) ^2$ Show that \mathbb{C} and $D = \{z/ z \leq 1\}$ are homeomorphic Show that $B(E)$ is a closed subalgebra of $C(K, \mathbb{C})$ that contains every rational function with a pole in E Suppose $\mathscr{F} \subset C(G, \Omega)$ is equicontinuous at each point of G ; then prove that \mathscr{F} is equicontinuous over each compact subset of G State and prove Jensen's Formula Let $\{a_n\}$ be a sequence in \mathbb{C} such that $lim a_n = \infty$ and $a_n \neq 0$ for all $n \geq 1$. If $\{p_n\}$ is any sequence of integers such that $\sum_{n=1}^{\infty} (\frac{r}{ a_n })^{p_n+1} \leq \infty$ for all $r \geq 0$ then $f(z) = \prod_{n=1}^{\infty} E_{p_n}(z/a_n)$ converges in $H(\mathbb{C})$. The function f is an entire function with zeros only at	(An, CO 3) (A, CO 2) (A, CO 2) (A) (U, CO 4)

17.	If $\{f_n\}$ is a sequence in $H(G)$ and f belongs to $C(G, \Omega)$ such that $f_n \longrightarrow f$ then prove that f is analytic and $f_n^k \longrightarrow f^k$ for each integer $k \ge 1$.	(An, CO 1)
18.	Let $D = \{z: z < 1\}$ and suppose that $f: \overline{D} \longrightarrow C$ is a continuous function such that both Ref and Imf are harmonic. Show that $f(re^{i heta}) = rac{1}{2\pi}\int_{-\pi}^{\pi}f(e^{it})P_r(heta-t)dt$ for all $re^{i heta}$ in D .	(A, CO 3)
	2π ° π ° π	(2 x 6 = 12)

PART C Answer any 2 questions Weights: 5

19.	Let $D = \{z: z < 1\}$ and suppose that $f: D \longrightarrow R$ is a	
	continuous function. Then show that there is a continuous function	
	$u:D\longrightarrow R$ such that	(U, CO 3)
	$(a)u(z)=f(z)$ for z in δD	
	(b)u is harmonic in D .	
20	Prove that a set $\mathscr{R} \subset C(C, \Omega)$ is normal iff the following two conditions	

- 20. Prove that a set $\mathscr{F} \subset C(G, \Omega)$ is normal iff the following two conditions are satisfied: (a) For each z in G, $\{f(z) : f \in \mathscr{F}\}$ has compact closure in Ω ; (b) \mathscr{F} is equicontinuous at each point of G. (An, CO 1)
- 21. Let G be a region and let $\{a_j\}$ be a sequence of distinct points in G with no limit point in G; and let $\{m_j\}$ be a sequence of integers. Then prove that there is an analytic function f defined on G whose only zeros are at the points a_j ; Furthermore, a_j is a zero of multiplicity m_j . (R)
- 22. Let G be a region such that $G = G^*$. If $f : G_+ \cup G_o \longrightarrow \mathbb{C}$ is a continuous function which is analytic on G_+ and if f(x) is real for x in G_o , then prove that there is an analytic function $g : G \longrightarrow \mathbb{C}$ such that g(z) = f(z) for z in $G_+ \cup G_o$. (U, CO 2) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain the space of functions, Riemann mapping theorem and Weierstrass factorization theorem.	U	17, 20	7
CO 2	Analyze Runge's Theorem, Simple connectedness, MittagLeffler's theorem, Analytic continuation and Riemann surfaces, Schwartz Reflection Principle, Analytic continuation along a path, Mondromy theorem.	An	1, 12, 13, 22	10
CO 3	Interpret Harmonic functions, Basic properties of harmonic functions and Harmonic functions on the disk.	U	4, 6, 11, 18, 19	11
CO 4	Perceive Entire functions, Jensen's formula, the genus and order of an entire function, Hadamard Factorization theorem.	U	15	2

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;