M. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024

SEMESTER 3 : MATHEMATICS

COURSE : 21P3MATT12 : FUNCTIONAL ANALYSIS

(For Regular 2023 Admission and Supplementary 2022/2021 Admissions)

Duration : Three Hours

Max. Weights: 30

PART A						
	Answer any 8 questions	Weight: 1				
1.	Let X and Y be normed linear spaces. If X is finite dimensional , show that every linear map $F:X o Y$ is continuous.	(A, CO 1)				
2.	Explain the completion X_c of a $nls \ X.$	(U, CO 4)				
3.	Show that every finite dimensional nls is a Banach space.	(A, CO 2)				
4.	Explain the concept of normed linear space. Give an example.	(U, CO 1)				
5.	Define Schauder basis for a nls X .	(R, CO 2)				
6.	Let X be a Banach space and $A\in BL(X).$ Define eigen value of A , eigen vector corresponding to an eigen value and eigen space corresponding to an eigen value.	(R, CO 3)				
7.	Let X be a Banach space. Is $BL(X)$ is a Banach space? Justify your answer.	(An <i>,</i> CO 3)				
8.	Let X and Y be normed linear spaces. For $F\in BL(X,Y)$, define $ F =sup\{ F(x) :x\in X, x \leq 1\}.$ Show that $ F(x) \leq F . x ,orall x\in X.$	(An, CO 1)				
9.	Let X be a Banach space and $A\in BL(X)$. Show that the map defined on the set of all invertible elements in $BL(X)$, which takes an invertible element $A\in BL(X)$ to its inverse A^{-1} in $BL(X)$, is continuous.	(An, CO 3)				
10.	Let X and Y be normed linear spaces and $F:X o Y$ be a linear map. Show that F is continuous at zero if and only if F is continuous on $X.$	(U, CO 1) (1 x 8 = 8)				
	PART B	. ,				
	Answer any 6 questions	Weights: 2				
11.	State and prove the Banach - Steinhaus theorem.	(E, CO 2)				
12.	Let X and Y be Banach function spaces and let x_0 be a K -valued function on T such that $x_0x\in Y$ whenever x is an element in X . Show that the map $F:X o Y$ defined by $F(x)=x_0x$, $orall x\in X$ is continuous.	(An, CO 2)				
13.	Let X be a Banach space. Give an example of an operator $A \in BL(X)$, which has a spectral value that is not an eigen value; in other words, give an example of $A \in BL(X)$, such that $e(A)$ is a proper subset of $s(A)$.	(An, CO 3)				
14.	Let X be a normed linear space and $a eq 0 \in X.$ Show that there is an $f \in X'$ such that $f(a) = a $ and $ f = 1.$	(An, CO 1)				
15.	Let X be a normed linear space. If Y is a subspace of X , prove that $Y eq X$ if and only if $Y^\circ = \emptyset.$	(An, CO 1)				
16.	Construct a linear functional which is not continuous.	(An, CO 1)				
17.	Let X be a normed linear space. Show that there exists a unique Banach space X_c and a linear isometry F_c of X into X_c such that $F_c(X)$ is dense in X_c .	(An, CO 4)				

18.	Let X be a Banach space and $A\in BL(X).$ Prove that the spectrum of $A,$ $s(A)$ is a compact subset of K	(An, CO 3) (2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	State and prove the closed graph theorem.	(An, CO 2)
20.	State and prove the Hahn-Banach extension theorem.	(E, CO 1)
21.	Let A be invertible in $BL(X).$ If $ B-A < rac{1}{ A^{-1} }$, prove that B is	
	invertible and $ B^{-1}-A^{-1} \leq rac{ A^{-1} ^2 B-A }{1-\epsilon}$, where	(An, CO 3)
	$\epsilon = A^{-1} A-B .$	
	Let Y and Y be Denselberger and $E \in DI(Y Y)$ (be with the E is east of	

22. Let X and Y be Banach spaces and $F \in BL(X, Y)$. Show that F is onto if and only if F' is bounded below, that is if and only if $\alpha ||y'|| \le ||F(y')||$ for (E, CO 4) every $y' \in Y'$ and for some $\alpha > 0$

(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Analyze normed linear spaces, continuity of linear maps, theory and applications of the Hahn-Banach Theorems	E	1, 4, 8, 10, 14, 15, 16, 20	15
CO 2	Analyze Banach spaces, Uniform boundedness principle and the Closed graph theorem.	E	3, 5, 11, 12, 19	11
CO 3	Analyze the Open Mapping theorem, the eigen spectrum and spectral radius.	E	6, 7, 9, 13, 18, 21	12
CO 4	Analyze duals of a normed linear space and transposes of bounded linear maps.	E	2, 17, 22	8

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;