M.Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024 SEMESTER 3 : MATHEMATICS

Reg. No

COURSE: 21P3MATT13: ADVANCED TOPOLOGY

(For Regular 2023 Admission and Supplementary 2022/2021 Admissions)

Durat	ion : Three Hours	Max. Weights: 30				
	PART A Answer any 8 questions Weight: 1					
	Answer any 8 questions	Weight: 1				
1.	Let A be a subset of X and let $x\in X$. If $x\in \bar{A}$, then prove that there exists a net in A which converges to x .	()				
2.	Is $\mathbb R$ locally compact? Justify.	()				
3.	Prove that T_0 - axiom is a productive property.	()				
4.	Define the net associated with a filter on X .	()				
5.	If a topological space is embeddedable into a cube, prove that the space Tychonoff.	is ()				
6.	Prove that T_1 -axiom is a productive property.	()				
7.	Prove that the evaluation function of a family of functions is one-one iff that family distinguishes points.	()				
8.	Define a locally compact space and give an example of a locally compact space which is not compact.	()				
9.	State Urysohn's Lemma.	(An)				
10.	Define an ultra filter on a set X .	()				
		$(1 \times 8 = 8)$				
	PART B	Woights: 2				
	Answer any 6 questions	Weights: 2				
11.		_				
11. 12.	Answer any 6 questions Prove that every continuous real- valued function on a countably compact	rt -				
	Answer any 6 questions Prove that every continuous real- valued function on a countably compact space is bounded and attains its extreme. Prove that a space X is connected if and only if each co-ordinate space is	ct ()				
12.	Answer any 6 questions Prove that every continuous real- valued function on a countably compact space is bounded and attains its extreme. Prove that a space X is connected if and only if each co-ordinate space is so If X is a Tychonoff space, prove that the family of all continuous	() (U)				
12. 13.	Answer any 6 questions Prove that every continuous real- valued function on a countably compact space is bounded and attains its extreme. Prove that a space X is connected if and only if each co-ordinate space is so If X is a Tychonoff space, prove that the family of all continuous real valued functions on X distinguishes points. State Urysohn's characterization of normality and using it prove that a	() (U) () ()				
12. 13. 14.	Answer any 6 questions Prove that every continuous real- valued function on a countably compact space is bounded and attains its extreme. Prove that a space X is connected if and only if each co-ordinate space is so If X is a Tychonoff space, prove that the family of all continuous real valued functions on X distinguishes points. State Urysohn's characterization of normality and using it prove that a connected, T_4 space with at least two points must be uncountable. Define co-final subset of a directed set. Suppose $S:D\to X$ is a net and F is a co-final subset of S . If $S/F:F\to X$ converges to a point X in X	() (U) () ()				
12. 13. 14. 15.	Prove that every continuous real- valued function on a countably compact space is bounded and attains its extreme. Prove that a space X is connected if and only if each co-ordinate space is so If X is a Tychonoff space, prove that the family of all continuous real valued functions on X distinguishes points. State Urysohn's characterization of normality and using it prove that a connected, T_4 space with at least two points must be uncountable. Define co-final subset of a directed set. Suppose $S:D\to X$ is a net and F is a co-final subset of S . If $S/F:F\to X$ converges to a point X in X then prove that X is a cluster point of S . If a space is second countable and T_3 , prove that it is embeddable in the	(U) (U) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I				
12.13.14.15.16.	Answer any 6 questions Prove that every continuous real- valued function on a countably compact space is bounded and attains its extreme. Prove that a space X is connected if and only if each co-ordinate space is so If X is a Tychonoff space, prove that the family of all continuous real valued functions on X distinguishes points. State Urysohn's characterization of normality and using it prove that a connected, T_4 space with at least two points must be uncountable. Define co-final subset of a directed set. Suppose $S:D\to X$ is a net and F is a co-final subset of S . If $S/F:F\to X$ converges to a point x in X then prove that x is a cluster point of S . If a space is second countable and T_3 , prove that it is embeddable in the Hilbert cube. Let $S:D\to X$ be a net in a space X and let $X\in X$. Then Prove that X	(U) (U) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I				

1 of 2 25-10-2024, 10:43

PART C

	Answer any 2 questions	Weights: 5
19.	Prove that a topological product is T_0,T_1,T_2 or regular iff each coordinate space has the corresponding property	()
20.	State and prove Urysohn's Metrisation theorem.	()
21.	For a topological space X , prove that the following statements are equivalent.	
	a. X is compact b. Every net in X has a cluster point in X . c. Every net in X has a convergent subnet in X .	()
22.	Prove that a subspace of a locally compact, Hausdorff space is locally compact iff it is open in its closure.	() (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
----	----------------------------	----	-----------	-----------

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

2 of 2