Weights: 5

M.Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024 SEMESTER 3 : MATHEMATICS

COURSE: 21P3MATT11: PARTIAL DIFFERENTIAL EQUATIONS

(For Regular 2023 Admission and Supplementary 2022/2021 Admissions)

Durat	ion : Three Hours	Max. Weights: 30		
	PART A	G		
	Answer any 8 questions	Weight: 1		
1.	Classify the pde as elliptic, hyperbolic or parabolic $z_{xx}+z_{yy}=0.$	(U, CO 4)		
2.	Find the particular integral of $(D^3-2D^2D'-DD'^2+2D'^3)z=e^{x+y}.$	(A, CO 3)		
3.	Solve $x_1p+x_2q=z.$	(A, CO 1)		
4.	Show that the pdes $z=px_1+qx_2$ and $f(x_1,x_2,z,p,q)=0$ are compatible if $f(x_1,x_2,z,p,q)=0$ is homogeneous in x_1,x_2,z .	(A, CO 2)		
5.	Form pde by eliminating arbitrary function from $F(x_1x_2+z^2,x_1+x_2+z)=0.$	(A, CO 1)		
6.	Find the complete integral of $(p+q)(z-px_1-qx_2)=1.$	(A, CO 2)		
7.	Define complete integral.	(R, CO 1)		
8.	Find the particular integral of $(r+s-2t)=e^{x+y}$	(A, CO 3)		
9.	Classify the pde as elliptic, hyperbolic or parabolic $z_{xx}=-x^2z_{yy}.$	(U, CO 4)		
10.	Find the complete integral of $p^2=qz$.	(A, CO 2) (1 x 8 = 8)		
PART B				
	Answer any 6 questions	Weights: 2		
11.	Solve: $(r+s-2t)z=e^{2x+y}$	(A, CO 3)		
12.	Solve $z(x_1p-x_2q)=x_2^2-x_1^2.$	(A, CO 1)		
13.	Solve $3r+4s+t+(rt-s^2)=1$ using Monge's method.	(A, CO 4)		
14.	Show that the equations $p^2+q^2-1=0, (p^2+q^2)x_1-pz=0$ are compatible and find a one parameter family of common solutions.	e (An, CO 2)		
15.	Solve $x_1(x_2-z)p + x_2(z-x_1)q = z(x_1-x_2).$	(A, CO 1)		
16.	Find the complete integral of $2(z+px_1+qx_2)=x_2p^2.$	(An, CO 2)		
17.	Solve $(D^2-D^\prime)z=e^{2x+y}$	(A, CO 3)		
18.	Solve $pq=x(ps-qr)$ using Monge's method.	(A, CO 4) (2 x 6 = 12)		

PART C Answer any 2 questions

19.	Find the complete integral of the equation $p^{z}x_{1}+x_{2}y=z$ and hence	
	derive the equation of the integral surface which contains the line	(An, CO 2)
	$x_2 = 1, x_1 + z = 0.$	
20.	Describe Monge's method and solve $r-tcos^2x+ptanx=0.$	(A, CO 4)

1 of 2

21. Show that the equation $(x_2^2+x_2x_3)dx_1+(x_1x_3+x_3^2)dx_2+(x_2^2-x_1x_2)dx_3=0 \text{ is} \tag{An, CO 1} integrable and find the integral.}$

22. Reduce to canonical form and solve the pde
$$r+2s+t=0$$
. (E, CO 3) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	explain the classification of first order pde and their solutions	Α	3, 5, 7, 12, 15, 21	12
CO 2	illustrate the integrals of nonlinear pde's	An	4, 6, 10, 14, 16, 19	12
CO 3	analyze linear pde with constant coefficients and special second order pde's	An	2, 8, 11, 17, 22	11
CO 4	analyze solutions of Laplace's equation	An	1, 9, 13, 18, 20	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

2 of 2