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PART A
Answer any 10 (2 marks each)

1. If  and  are subsets of real numbers, then prove that .

2. Find the infimum and supremum of the set . Which of

these belongs to the set?

3. State Raabe's test for convergence of  a series.

4. Give an example of a subset of  which is not order complete.

5. Define a monotonic increasing sequence and give an example.

6. Define dense set. Give an example.

7. Explain the concept of convergence of a series .

8.
Evaluate .

9. Define limit point of a sequence. What are the limit points of the sequence ?

10. Define a bounded below sequence and give an example.

11. Define limit inferior of a sequence.

12.
Show that the series  is convergent.

PART B
Answer any 5 (5 marks each)

13.
Test the convergence of the series .

14. Test the convergence of the series 

15. Show that the intersec�on of a finite collec�on of open sets is open. Is this theorem valid for
an arbitrary family of open sets? Jus�fy.

16. If , prove that,
(a) 

(b) , provided .

17.
Show that the sequence  where 

is convergent.
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18. Test for convergence of the series 

19. If  and  are two func�ons defined on some neighbourhood of a point of c such that 
 and  , prove

that 

20. Prove that a monotonic increasing sequence which is not bounded above diverges to .

PART C
Answer any 3 (10 marks each)

21. Show that a set is closed if and only if its complement is open.

22. State and prove D'Alembert's ra�o test.

23. Show that a sequence is convergent if and only if it is bounded and has a unique limit point.

24. State and prove the logarithmic test for posi�ve term series.
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