Name

B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2024 SEMESTER 5 : MATHEMATICS

COURSE : 19U5CRMAT05 : REAL ANALYSIS - I

For Regular 2022 Admission and Supplementary 2021/2020/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A

Answer any 10 (2 marks each)

- 1. If S and T are subsets of real numbers, then prove that $S\subseteq T\Rightarrow S'\subseteq T'.$
- 2. Find the infimum and supremum of the set $\{-2, -\frac{3}{2}, -\frac{4}{3}, -\frac{5}{4}, \dots, -\frac{n+1}{n}, \dots\}$. Which of these belongs to the set?
- 3. State Raabe's test for convergence of a series.
- 4. Give an example of a subset of \mathbb{R} which is not order complete.
- 5. Define a monotonic increasing sequence and give an example.
- 6. Define dense set. Give an example.
- 7. Explain the concept of convergence of a series $\sum u_n$.
- 8. Evaluate $\lim_{x o 1} rac{x^2-1}{x-1}.$
- 9. Define limit point of a sequence. What are the limit points of the sequence $\{\frac{1}{n}\}$?
- 10. Define a bounded below sequence and give an example.
- 11. Define limit inferior of a sequence.
- 12. Show that the series $\sum rac{(n+1)^{n^2}}{3^n n^{n^2}}$ is convergent.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- ^{13.} Test the convergence of the series $\sum rac{1}{n^{1+1/n}}.$
- 14. Test the convergence of the series $x+2x^2+3x^3+4x^4+\cdots$
- 15. Show that the intersection of a finite collection of open sets is open. Is this theorem valid for an arbitrary family of open sets? Justify.
- 16. If $x, y \in \mathbb{R}$, prove that, (a) |xy| = |x||y|(b) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$, provided $y \neq 0$.
- ^{17.} Show that the sequence $\{S_n\}$ where $S_n=rac{1}{n+1}+rac{1}{n+2}+\ldots+rac{1}{n+n}, \ \forall n\in\mathbb{N}$ is convergent.

18. Test for convergence of the series $\sum rac{(n^3+1)^{1/3}-n}{\log n}$

- 19. If f and g are two functions defined on some neighbourhood of a point of c such that $\lim_{x \to c} f(x) = l$ and $\lim_{x \to c} g(x) = m$, prove that $\lim_{x \to c} (f - g)(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = l - m$
- 20. Prove that a monotonic increasing sequence which is not bounded above diverges to $+\infty$. (5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. Show that a set is closed if and only if its complement is open.
- 22. State and prove D'Alembert's ratio test.
- 23. Show that a sequence is convergent if and only if it is bounded and has a unique limit point.
- 24. State and prove the logarithmic test for positive term series.

 $(10 \times 3 = 30)$