Reg. No	Name	24P2055
Reg. INO	Name	2472033

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024 SEMESTER 2 - MATHEMATICS

COURSE: 21P2MATT10 - MEASURE THEORY AND INTEGRATION

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)

Duration : Three Hours		Max. Weights: 30						
	PART A							
	Answer any 8 questions	Weight: 1						
1.	Let f and g be two measurable functions defined on X , where (X,\mathcal{B}) is measurable space, prove that $f+g$ is a measurable function.	(A, CO 4)						
2.	Prove that the outer measure of a singleton set is zero. Hence prove that the outer measure of a finite set is zero.	(A, CO 2)						
3.	When we say a property holds almost everywhere? If $f \leq g$ a.e., then what is the value of $m\{x: f(x)>g(x)\}$?	(U, CO 2)						
4.	Define the product of the measurable spaces $[[X,\mathcal{S}]]$ and $[[Y,\mathcal{J}]].$	(U, CO 5)						
5.	Let (X,B,μ) be a measure space and f be a non-negative measurable function defined on X . Prove that the set function ϕ defined as B by $\phi(E)=\int_E f d\mu$ is a measure.	(A, CO 4)						
6.	Show that if f is integrable over E , then so is $ f $ and $ \int_E f \le \int_E f $. Does the integrability of $ f $ imply that of f ? Justify.	(A, CO 2)						
7.	Define the characteristic function of a set A . If A and B are two sets, prove that	(A, CO 2)						
8.	$\chi_{A\cup B}=\chi_A+\chi_B-\chi_A\chi_B.$ Define upper and lower Riemann integrals using step functions.	(U, CO 2)						
9.	If μ_1 and μ_2 are two measure on a measurable space (X,B) and a and are two positive constants, then prove that $a\mu_1+b\mu_2$ is also a measure	$(\Delta (() \Delta)$						
10.	Define canonical representation of a simple function.	(U, CO 3) (1 x 8 = 8)						
	PART B							
	Answer any 6 questions	Weights: 2						
11.	If $\mathcal Y$ in any class of subsets of X , then prove that there exists a smallest monotone class containing $\mathcal Y$.	(A, CO 5)						
12.	(a) Prove that χ_A is measurable if and only if A is measurable. (b) Prove that the set of all points on which a sequence $\langle f_n \rangle$ of measural functions converges is measurable.	ole (A, CO 2)						
13.	Let f and g be two non-negative measurable functions such that $f\geq g$. g is integrable, then show that $\int f-\int g=\int (f-g).$	(A, CO 3)						
14.	Give an example of a non-measurable set.	(A, CO 2)						
15.	Suppose (X,\mathcal{B},μ) is a measure space. (i) If $E_1,E_2\in\mathcal{B}$ and $\mu(E_1\Delta E_2)=0$, then prove that $\mu E_1=\mu E_2$ (ii) Show that if μ is complete, $E_1\in\mathcal{B}$ and $\mu(E_1\Delta E_2)=0$, then $E_2\in\mathcal{B}$.	(A, CO 4)						

- 16. By integrating $e^{-y}\sin 2xy$ w.r.t x and y, show that $\int_0^\infty e^{-y}\frac{\sin^2 y}{y}dy=\frac{\log 5}{4}.$ (A, CO 5)
- 17. Prove that every measurable subset of a positive set is positive. Also prove that countable union of positive sets is positive. (An, CO 4)
- 18. a. If ϕ is a simple function taking the distinct values a_1, a_2, \ldots, a_n on the disjoint measurable sets A_1, A_2, \ldots, A_n respectively, then state the canonical representation of ϕ .
 - b. If E is any measurable set, prove that $\int_E \phi = \sum_1^n a_i m(A_i \cap E)$. (A, CO 3) Using it prove that $\int_{A \cup B} \phi = \int_A \phi + \int_B \phi$ if A and B are two disjoint measurable sets.

 $(2 \times 6 = 12)$

PART C Answer any 2 questions

Weights: 5

- 19. State and prove any two convergence theorems. (A, CO 3)
- 20. (a) Prove that the collection $\mathcal M$ of all measurable sets is a σ -algebra. (b) Prove that (a,∞) is measurable for all $a\in R$.
- 21. Prove that $\mathcal{S} imes \mathcal{J} = \mathcal{M}_{\circ}(\mathcal{E}).$ (A, CO 5)
- (a) State and prove Hahn decomposition theorem.
 (b) State Jordan Decomposition theorem
 (A, CO 4)
 (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	define measurable set, measurable function, Lebesgue integral and to relate Lebesgue integral with Riemann integral.	Α	20	5
CO 2	explain the relevance of Lebesgue integration	Α	2, 3, 6, 7, 8, 12, 14	9
CO 3	solve problems related to Lebegue integral, Lebesgue and abstract measure, Lebesgue and abstract outer measure, signed measure, Integral with respect to a measure, Integral with respect to product measure.	Α	10, 13, 18, 19	10
CO 4	analyse the algebraic properties of Lebesgue integrable functions and Lebesgue measurable functions.	An	1, 5, 9, 15, 17, 22	12
CO 5	develop an algebraic as well as a geometrical structure for the collection of all integrable functions.	Cr	4, 11, 16, 21	10

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;