\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024 SEMESTER 2 - MATHEMATICS

COURSE : 21P2MATT10 - MEASURE THEORY AND INTEGRATION
(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)
Duration : Three Hours
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1
(A, CO 4)
(A, CO 2)
(U, CO 2)
(U, CO 5)
(A, CO 4) $\phi(E)=\int_{E} f d \mu$ is a measure.
6. Show that if f is integrable over E, then so is $|f|$ and $\left|\int_{E} f\right| \leq \int_{E}|f|$. Does the integrability of $|f|$ imply that of f ? Justify.
7. Define the characteristic function of a set A. If A and B are two sets, prove that
$\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \chi_{B}$.
8. Define upper and lower Riemann integrals using step functions.
(U, CO 2)
($\mathrm{A}, \mathrm{CO} 4$)
($\mathrm{U}, \mathrm{CO} 3$)
($1 \times 8=8$)
PART B
Answer any 6 questions
11. If \mathcal{Y} in any class of subsets of X, then prove that there exists a smallest monotone class containing \mathcal{Y}.
12. (a) Prove that χ_{A} is measurable if and only if A is measurable.
(b) Prove that the set of all points on which a sequence $\left\langle f_{n}\right\rangle$ of measurable functions converges is measurable.
13. Let f and g be two non-negative measurable functions such that $f \geq g$. If g is integrable, then show that
$\int f-\int g=\int(f-g)$.
14. Give an example of a non-measurable set.

Weights: 2
(A, CO 5)
(A, CO 2)
(A, CO 3)
(A, CO 2)
15. Suppose (X, \mathcal{B}, μ) is a measure space.
(i) If $E_{1}, E_{2} \in \mathcal{B}$ and $\mu\left(E_{1} \Delta E_{2}\right)=0$, then prove that $\mu E_{1}=\mu E_{2}$
(ii) Show that if μ is complete, $E_{1} \in \mathcal{B}$ and $\mu\left(E_{1} \Delta E_{2}\right)=0$, then $E_{2} \in \mathcal{B}$.
16. By integrating $e^{-y} \sin 2 x y$ w.r.t x and y, show that $\int_{0}^{\infty} e^{-y} \frac{\sin ^{2} y}{y} d y=\frac{\log 5}{4}$.
17. Prove that every measurable subset of a positive set is positive. Also prove that countable union of positive sets is positive.
18. a. If ϕ is a simple function taking the distinct values $a_{1}, a_{2}, \ldots, a_{n}$ on the disjoint measurable sets $A_{1}, A_{2}, \ldots, A_{n}$ respectively, then state the canonical representation of ϕ.
b. If E is any measurable set, prove that $\int_{E} \phi=\sum_{1}^{n} a_{i} m\left(A_{i} \cap E\right)$. (A, CO 3) Using it prove that $\int_{A \cup B} \phi=\int_{A} \phi+\int_{B} \phi$ if A and B are two disjoint measurable sets.

PART C

Answer any 2 questions
Weights: 5
19. State and prove any two convergence theorems.
20. (a) Prove that the collection \mathcal{M} of all measurable sets is a σ-algebra.
(b) Prove that (a, ∞) is measurable for all $a \in R$.
21. Prove that $\mathcal{S} \times \mathcal{J}=\mathcal{M}_{\circ}(\mathcal{E})$.
22. (a) State and prove Hahn decomposition theorem.
(b) State Jordan Decomposition theorem
(A, CO 4)
($5 \times 2=10$)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1define measurable set, measurable function, Lebesgue integral and to relate Lebesgue integral with Riemann integral.	A	20	5	
CO 2	explain the relevance of Lebesgue integration	A	$2,3,6,7,8$, 12,14	9
	solve problems related to Lebegue integral , Lebesgue and abstract measure, Lebesgue and abstract outer measure, signed measure ,Integral with respect to a measure, , Integral with respect to product measure .	A	$10,13,18$, 19	10
CO 4analyse the algebraic properties of Lebesgue integrable functions and Lebesgue measurable functions.	An	$1,5,9,15$, 17,22	12	
CO 5	develop an algebraic as well as a geometrical structure for the collection of all integrable functions.	Cr	$4,11,16$, 21	10

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

