\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024
 SEMESTER 2 - MATHEMATICS FOR B Sc COMPUTER APPLICATIONS COURSE : 19U2CRCMT2 - ANALYTIC GEOMETRY, THEORY OF EQUATIONS AND NUMERICAL METHODS

(For Regular - 2023 Admission and Improvement / Supplementary - 2022/2021/2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75
PART A
Answer any 10 (2 marks each)

1. Evaluate $\Delta\left(\frac{2^{x}}{(x+1)!}\right)$ interval of differencing being unity.
2. Find the equation of a straight line whose perpendicular distance from pole is ' p ' and the perpendicular making angle α with initial line.
3. Find the equation of polar of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
4. Find the condition for the line $\mathrm{I} x+\mathrm{my}+\mathrm{n}=0$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
5. Find the locus of the point of intersection of perpendicular tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
6. Find the general equation of a line in polar co-ordinates.
7. Solve $x^{4}-4 x^{2}+8 x+35=0$. Given $2+i \sqrt{3}$ is a root
8. Find the equation of the chord joining the points $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola $y^{2}=4 a x$.
9. Find the condition in order that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ may be a tangent to the conic $\frac{l}{r}=1+e \cos \theta$.
10. Find the quiotent and remainder when $2 x^{3}-5 x^{2}-x+3$ is divisible by $\mathrm{x}+3$.
11. Prove that $\Delta\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \Delta f(x)-f(x) \Delta g(x)}{g(x+h) g(x)}$
12. Prove that the equation $x^{3}+2 x+3=0$ has one negative real root and two imaginary roots.

PART B

Answer any 5 (5 marks each)
13. Find the locus of foot of the perpendicular from a fixed point on a circle upon any tangent.
14. The following table gives corresponding values of x and y.From the difference table express y as a function of x :
$\mathrm{x}: \begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$y: 3 \quad 6 \quad 11 \quad 18 \quad 27$
Using Newtons forward interpolation formula.
15. Solve $x^{4}+x^{3}-33 x^{2}+61 x-14=0$. Given that $2+\sqrt{3}$ is a root.
16. Solve the equation $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
17. Evaluate $\int_{4}^{5.2} \log _{e} x d x$ using Simpson's $1 / 3$ rule.
18. Find the equation of the chord joining the points whose vectorial angles are $\theta 1$ and $\theta 2$ on the circle $r=2 a \cos \theta$. Hence deduce equation of the tangent to the circle at $\theta 1$.
19. Find the equation of chord of contact of tangents from ($\mathrm{x}_{1}, \mathrm{y}_{1}$) to parabola $y^{2}=4 a x$.
20. Find the equation of the normal at the point θ on th ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

PART C

Answer any 3 (10 marks each)

21. Use Newton's difference formula to find $\mathrm{f}(\mathrm{x})$ from following data.

x	0	1	2	4	5	6
$f(x)$	1	14	15	5	6	19

22. Solve by Ferraris method $x^{4}-2 x^{3}-12 x^{2}+10 x+3=0$.
23. a) Show that the chords of the parabola which subtend a right angle at the vertex meet the axes at a fixed point.
b) Prove that the orthocentre of a triangle inscribed in a rectangular hyperbola lies on the rectangular hyperbola.
24. Find the equation of the tangent at a point on the conic $\frac{l}{r}=1+e \cos \theta$ whose vectrorial angle is α.
($10 \times 3=30$)
