B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024 SEMESTER 2 - MATHEMATICS FOR B Sc COMPUTER APPLICATIONS

Name

COURSE: 19U2CRCMT2 - ANALYTIC GEOMETRY, THEORY OF EQUATIONS AND NUMERICAL METHODS

(For Regular - 2023 Admission and Improvement / Supplementary – 2022/2021/2020/2019 Admissions)

Time: Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Evaluate $\Delta\left(\frac{2^x}{(x+1)!}\right)$ interval of differencing being unity.
- 2. Find the equation of a straight line whose perpendicular distance from pole is 'p' and the perpendicular making angle α with initial line.
- 3. Find the equation of polar of (x₁, y₁) with respect to hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 4. Find the condition for the line lx + my + n = 0 to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 5. Find the locus of the point of intersection of perpendicular tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 6. Find the general equation of a line in polar co-ordinates.
- 7. Solve $x^4-4x^2+8x+35=0$. Given $2+i\sqrt{3}$ is a root
- 8. Find the equation of the chord joining the points $\left(at_1^2,2at_1\right)$ and $\left(at_2^2,2at_2\right)$ on the parabola $y^2=4ax$.
- 9. Find the condition in order that the line $\frac{l}{r}=A\cos\theta+B\sin\theta$ may be a tangent to the conic $\frac{l}{r}=1+e\cos\theta$.
- $10. \;\;$ Find the quiotent and remainder when $2x^3-5x^2-x+3\;$ is divisible by x+3 .
- 11. Prove that $\Delta\left[rac{f(x)}{g(x)}
 ight]=rac{g(x)\Delta f(x)-f(x)\Delta g(x)}{g(x+h)g(x)}$
- 12. Prove that the equation $x^3+2x+3=0$ has one negative real root and two imaginary roots.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- 13. Find the locus of foot of the perpendicular from a fixed point on a circle upon any tangent.
- 14. The following table gives corresponding values of x and y.From the difference table express y as a function of x:

x: 0 1 2 3 4 y:3 6 11 18 27

Using Newtons forward interpolation formula.

- 15. Solve $x^4+x^3-33x^2+61x-14=0$. Given that $2+\sqrt{3}$ is a root.
- 16. Solve the equation $6x^5 + 11x^4 33x^3 33x^2 + 11x + 6 = 0$.
- 17. Evaluate $\int_4^{5.2} \log_e x \ dx$ using Simpson's 1/3 rule.
- 18. Find the equation of the chord joining the points whose vectorial angles are $\theta 1$ and $\theta 2$ on the circle r=2a cos θ . Hence deduce equation of the tangent to the circle at $\theta 1$.

- 19. Find the equation of chord of contact of tangents from (${\sf x_1}$, ${\sf y_1}$) to parabola $y^2=4ax$.
- 20. Find the equation of the normal at the point θ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

21. Use Newton's difference formula to find f(x) from following data.

х	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

- 22. Solve by Ferraris method $x^4-2x^3-12x^2+10x+3=0$.
- 23. a) Show that the chords of the parabola which subtend a right angle at the vertex meet the axes at a fixed point.
 - b) Prove that the orthocentre of a triangle inscribed in a rectangular hyperbola lies on the rectangular hyperbola.
- 24. Find the equation of the tangent at a point on the conic $\frac{l}{r}=1+e\cos\theta$ whose vectrorial angle is α .

 $(10 \times 3 = 30)$