END SEMESTER EXAMINATION - MARCH 2024

SEMESTER 2 - INTEGRATED M.Sc. PROGRAMME COMPUTER SCIENCE

COURSE: 21UP2CPCMT02 - MATHEMATICS - II - LINEAR ALGEBRA

(For Regular - 2023 Admission and Improvement / Supplementary - 2022/2021 Admissions)

Time: Three Hours Max. Weightage: 30

PART A Answer any 8 Questions

- 1. (-1)v = -v for every $v \in V$
- 2. Define Basis of a vector space and give the standard basis for F^2 , P^2 and F^3
- 3. Check the list (2,3,1), (1,-1,2), (7,3,8) are linearly independent or not in F^3 ;
- 4. Define Linear Function with an Example.
- 5. Find the transpose of the following matrices;

$$\begin{pmatrix} 2 & 5 & 3 \\ 1 & 8 & 0 \end{pmatrix}, \begin{pmatrix} a & c \\ d & c \\ b & b \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 3 & 4 & 6 & 5 \\ 1 & 3 & 5 & 0 & 1 \end{pmatrix}$$

- 6. Explain diagonal of a matrix and upper triangular matrix with suitable example.
- 7. Define Invariant subspace. Suppose T ∈ L(V) . Show that each of the following subspaces of V is invarient under T;
 - 1. {0}
 - 2. V
 - 3. NullT
 - 4. RangeT
- 8. prove the following result; $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$ for all $\lambda \in F$ and $u, v \in V$
- 9. Define innerproduct space
- 10. Prove the following result;
 - 1. For each fixed u ∈V, the function that takes V to < v,u > is a linear map from V to F
 - 2. < 0, u > = 0 for every $u \in V$

 $(1 \times 8 = 8 \text{ Weight})$

PART B Answer any 6 Questions

- 11. Prove that a subset U of V is a subspace of V if and only if U satisfies the following three conditions:
 - 1. 0 ∈ U
 - 2. $u,w \in U$ implies $u+w \in U$
 - 3. $a \in F$ and $u \in U$ implies $au \in U$
- 12. Check whether the list of vectors (1,1),(1,-1) is basis in F^2

- 13. Suppose $D \in L(P(R),P(R))$ is the differentiation map defined by $D_p = p'$ and $T \in L(P(R),P(R))$ is the multiplication by x^2 defined by $T_p(x) = x^2p(x)$. Then prove that multiplication on linear map is not commutative.
- 14. show that the following maps are linear;
 - 1. T: $V \rightarrow W$ defined by T(v)=0
 - 2. D: $P(R) \rightarrow P(R)$ defined by $D_p = p'$
 - 3. T: P(R) \rightarrow P(R) defined by T_p= $\int_0^1 P(x) dx$
 - 4. T: $P(R) \rightarrow P(R)$ defined by $T_p(x) = x^2 p(x)$
 - 5. T: $R^3 \rightarrow R^2$ defined by T(x,y,z) = (2x-y+3z, 7x+5y-6z)
- 15. Check whether T ∈ L(P²) defined by T(at²+bt+c) = (5a+b+2c)t² + 3bt +(2a+b+5c) is diagonalizable with respect to the basis t²-2t,-2t+1,t²+1 of P². Give valuable reason for your answer.
- 16. Give matrix representation for the following operators
 - 1. $T \in L(F^3)$ defined by T(x,y,z) = (2x+y, 5y+3z, 8z)
 - 2. $T \in L(F^2)$ defined by T(x,y) = (2x+3y, 5x)
- 17. State and prove Pythegorean theorem.
- 18. Check the standard basis in F³ is an orthonormal list.

 $(2 \times 6 = 12 \text{ Weight})$

PART C Answer any 2 Questions

- 19. The span of list of vectors in V is the smallest subspace of V containing all the vectors in the list.
- 20. Prove the following;
 - 1. Let $T \in L(V,W)$. Then T is injective if and only if NullT = $\{0\}$
 - 2. If $T \in L(V,W)$ then range T is a subspace of W.
- 21. Suppose $T \in L(V)$ and v_1, \dots, v_n is a basis of V. Then the following are equivalent:
 - a) The matrix T with respect to v_1, \ldots, v_n is upper triangular
 - b) $Tv_i \in span(v_1,...,v_n)$ for each j=1,2,...,n.
 - c) span $(v_1,...,v_n)$ is invariant under T for each j=1,2,...,n.
- 22. State and prove Triangle inequality and Parallelogram Inequality.

 $(5 \times 2 = 10 \text{ Weight})$