24P2031

Max. Weights: 30

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024

SEMESTER 2 - MATHEMATICS

COURSE : 21P2MATT08 - GRAPH THEORY

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)

Duration : Three Hours

Durut	PART A					
	Answer any 8 questions	Weight: 1				
1.	Prove or disprove: Let G be a simple connected graph with $n\geq 3.$ Then G has a cut edge if and only if it has a cut vertex.	(A, CO 2)				
2.	Prove that a simple graph G with n vertices $n\geq 2$, is complete if and only if $\kappa(G)=n-1$	(U, CO 2)				
3.	Define a graphical sequence. Show that the sequence $(7, 6, 3, 3, 2, 1, 1, 1)$ is not graphical.	(U, CO 1)				
4.	Define a self complementary graph and give an example.	(U, CO 1)				
5.	Define proper vertex coloring and chromatic number of a graph G .	(R, CO 3)				
6.	Let f be a plane graph and f be a face of G . Show that there exists a plane embedding of G in which f is the exterior face.	(U, CO 4)				
7.	Give an example of a cubic graph with edge chromatic number 4.	(A, CO 3)				
8.	If (d_1, d_2, \ldots, d_n) is the degree sequence of a graph, and r be any positive integer.					
	Show that $\displaystyle{\sum_{i=1}^n d_i^r}$ is even.	(E, CO 1)				
9.	Show that the Petersen graph is nonplanar.	(An, CO 4)				
10.	If u and v are nonadjacent vertices of a tree T , show that $T + uv$ contains a unique cycle.	(U, CO 2)				
		(1 x 8 = 8)				
PART B						
4.4	Answer any 6 questions	Weights: 2				
11.	Show that the closure of a graph is well defined.	(An, CO 3)				
12.	Prove that a vertex v of a tree T with at least three vertices is a cut vertex of T if and only if v is not a pendant vertex.	(A, CO 2)				
13.	Define the dual H of a plane graph G . Further,describe the method of drawing the canonical embedding G^st of G in the plane.	(An, CO 4)				
14.	Show that every tournament of order n has at most one vertex with $d^+(v)=n-1.$	(A, CO 1)				
15.	Show that if G is a simple planar graph with at least three vertices, then $m \leq 3n-6$	(A, CO 4)				
16.	Show that a simple connected graph contains at least $m-n+1$ distinct cycles.	(E, CO 1)				
17.	Show that for a simple bipartite graph, $m \leq rac{n^2}{4}.$	(A, CO 1)				
18.	Briefly describe Hamilton's "Around the World Game" and its significance.	(R, CO 3) (2 x 6 = 12)				

	PART C	
	Answer any 2 questions	Weights: 5
19.	Show that a graph G is planar if and only if each of its blocks is planar.	(A, CO 4)
20.	Show that a graph G is Eulerian if and only if it has an odd number of cycle decompositions.	(An, CO 3)
21.	Find the number of spanning trees of the labeled graph $K_4.$	(A, CO 2)
22.	If the simple graphs G_1 and G_2 are isomorphic, show that $L(G_1)$ and $L(G_2)$ are isomorphic. Is the converse true? Justify.	(E, CO 1)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain basic concepts such as subgraphs, degrees of vertices, paths and connectedness, automorphisms of a simple graph, line graphs and basic concepts of tournaments.	E	3, 4, 8, 14, 16, 17, 22	14
CO 2	Comprehend connectivity, vertex cuts , edge cuts, connectivity and edge connectivity, blocks, counting the number of spanning trees and Cayley's formula.	E	1, 2, 10, 12, 21	10
CO 3	Analyse vertex and edge independent sets, Eulerian graphs, Hamiltonian graphs, vertex colorings and related results.	E	5, 7, 11, 18, 20	11
CO 4	Explain edge coloring and planarity, certain definitions and properties, dual of a plane graph, the four color theorem and the Heawood five color theorem.	E	6, 9, 13, 15, 19	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;