\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024
 SEMESTER 2 - MATHEMATICS
 COURSE : 21P2MATT08-GRAPH THEORY

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)
Duration : Three Hours
Max. Weights: 30
PART A

Answer any 8 questions

1. Prove or disprove: Let G be a simple connected graph with $n \geq 3$. Then G has a cut edge if and only if it has a cut vertex.

Weight: 1
(A, CO 2)
(U, CO 2)
(U, CO 1)
(U, CO 1)
(R, CO 3)
(U, CO 4)
(A, CO 3)
7. Give an example of a cubic graph with edge chromatic number 4.
8. If $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the degree sequence of a graph, and r be any positive integer.
Show that $\sum_{i=1}^{n} d_{i}^{r}$ is even.
(E, CO 1)
9. Show that the Petersen graph is nonplanar.
(An, CO 4)
10. If u and v are nonadjacent vertices of a tree T, show that $T+u v$ contains a unique cycle.
(U, CO 2)
(1 $\times 8=8$)

PART B

Answer any 6 questions

11. Show that the closure of a graph is well defined.
12. Prove that a vertex v of a tree T with at least three vertices is a cut vertex of T if and only if v is not a pendant vertex.
13. Define the dual H of a plane graph G. Further, describe the method of drawing the canonical embedding G^{*} of G in the plane.

Weights: 2
(An, CO 3)
(A, CO 2)
(An, CO 4)
14. Show that every tournament of order n has at most one vertex with $d^{+}(v)=n-1$.
15. Show that if G is a simple planar graph with at least three vertices, then $m \leq 3 n-6$
(A, CO 4)
16. Show that a simple connected graph contains at least $m-n+1$ distinct cycles.
17. Show that for a simple bipartite graph, $m \leq \frac{n^{2}}{4}$.
18. Briefly describe Hamilton's "Around the World Game" and its significance.

PART C

Answer any 2 questions

Weights: 5
19. Show that a graph G is planar if and only if each of its blocks is planar.
20. Show that a graph G is Eulerian if and only if it has an odd number of cycle decompositions.
(An, CO 3)
21. Find the number of spanning trees of the labeled graph K_{4}.
22. If the simple graphs G_{1} and G_{2} are isomorphic, show that $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are isomorphic. Is the converse true? Justify.
OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1Explain basic concepts such as subgraphs, degrees of vertices, paths and connectedness, automorphisms of a simple graph, line graphs and basic concepts of tournaments.	E	$3,4,8,14$, $16,17,22$	14	
CO 2Comprehend connectivity, vertex cuts, edge cuts, connectivity and edge connectivity, blocks, counting the number of spanning trees and Cayley's formula.	E	$1,2,10,12$,	10	
CO 3	Analyse vertex and edge independent sets, Eulerian graphs, Hamiltonian graphs, vertex colorings and related results.	E	21, 7, 11, 18, 20	11
CO 4Explain edge coloring and planarity, certain definitions and properties, dual of a plane graph, the four color theorem and the Heawood five color theorem.	E	$6,9,13,15$, 19	11	

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

