\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024
 SEMESTER 2 - MATHEMATICS
 COURSE : 21P2MATTO9 - NUMBER THEORY

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)
Duration : Three Hours
Max. Weights: 30
PART A
Answer any 8 questions

1. Find the group of units of the ring of integers in $\mathrm{Q}(\sqrt{-1})$.

Weight: 1
(U, CO 4)
($\mathrm{A}, \mathrm{CO} 4$)
2. Prove that factorization into irreducible is possible in O . has solutions, if and only if, $d \mid b$.
4. Solve the congruence $5 x \equiv 3(\bmod 24)$.
5. True or false : If a non zero ideal a is prime, then $\mathrm{N}(\mathrm{a})$ is a prime. Justify.
6. Prove that the m residue classes $\hat{1}, \hat{2}, \ldots, \hat{m}$ are disjoint and their union is the set of all integers.
7.

Prove that $\sum_{n \leq x} \mu(n)\left[\begin{array}{l}x \\ n\end{array}\right]=1$ for $x \geq 1$
8. Prove that Möbius function is not completely multiplicative but multiplicative.
9. Suppose that $h=f * g$ and let $H(x)=\sum_{n \leq x} h(n), F(x)=\sum_{n \leq x} f(n)$ and $G(x)=\sum_{n \leq x} g(n)$. Prove that $H(x)=\sum_{n \leq x} f(n) G(x / n)=\sum_{n \leq x} g(n) F(x / n)$.

PART B

Answer any 6 questions

11. Derive formula for the divisor sum of Euler totient function.

Weights: 2
(A, CO 1)
12. Prove that O of $\mathrm{Q}(\sqrt{-5})$ is not a unique factorization domain.
(An, CO 3)
13. Prove that for $n \geq 1, \frac{1}{6} n \log n<p_{n}<12\left(n \log n+n \log \left(\frac{12}{e}\right)\right)$ where p_{n} is the $n^{\text {th }}$ prime.
14. Let a be an ideal of O . Prove that $\mathrm{N}(\mathrm{a})=\left|\frac{\Delta\left[\alpha_{1}, \ldots, \alpha_{n}\right]}{\Delta}\right|$, where Δ is the (A, CO 4) discriminant.
15. Prove that the following conditions are equivalent for an integral domain D

1. D is noetherian,
2. D satisfies the ascending chain condition,
3. D satisfies the maximal condition.
4. If a is a non-zero ideal and $\mathrm{a} S \subseteq$ a for any set $S \subseteq K$, then prove that $S \subseteq 0$.
5. Assume m_{1}, \ldots, m_{r} are relatively prime in pairs. Let b_{1}, \ldots, b_{r} be arbitrary integers and let a_{1}, \ldots, a_{r} satisfy $\left(a_{k}, m_{k}\right)=1$ for $k=1,2, \ldots, r$. Prove that the linear system of congruences
$a_{1} x \equiv b_{1}\left(\bmod m_{1}\right), \ldots, a_{r} x \equiv b_{r}\left(\bmod m_{r}\right)$ has exactly one solution modulo $m_{1} m_{2} \ldots m_{r}$.
6. Prove that two lattice points (a, b) and (m, n) are mutually visible if, and only if, $a-m$ and $b-n$ are relatievly prime.

PART C

Answer any 2 questions
Weights: 5
19. Prove that every non-zero ideal of O can be written as a product of prime ideals, uniquely up to order of the factors.
20. Define Euclidean quadratic Field. Prove that the ring of integers O of $\mathrm{Q}(\sqrt{d})$ is Euclidean for $d=-2,-11$.
21. Prove that the following statements are equivalent

1. $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$.
2. $\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1$.
(A, CO 2)
3. $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$.
4.

Prove that if $x \geq 1$ and $\alpha>0, \alpha \neq 1 \sum_{n \leq x} \sigma_{\alpha}(n)=\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1}+O\left(x^{\beta}\right)$
where $\beta=\max \{1, \alpha\}$.
(5 x $2=10$)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	$C L$	Questions	Total Wt.
CO 1	U	$7,8,9,11,22$	10	
CO 2		A	$3,4,6,13,17,18,21$	14
CO 3	A	$12,15,20$	9	
CO 4	An	$1,2,14,19$	9	
CO 5	An	$5,10,16$	4	

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

