Reg. No

24P2042

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024

SEMESTER 2 - MATHEMATICS

COURSE : 21P2MATT09 - NUMBER THEORY

(For Regular 2023 Admission and Improvement/Supplementary 2022/2021 Admissions)

Duration : Three Hours

	PART A Answer any 8 questions	Weight: 1					
1.	Find the group of units of the ring of integers in $\mathrm{Q}\!\left(\sqrt{-1} ight)$.	(U, CO 4)					
2.	Prove that factorization into irreducible is possible in O.	(A, CO 4)					
3.	Assume $(a, m) = d$. Prove that the linear congruence $ax \equiv b \pmod{m}$ has solutions, if and only if, $d \mid b$.	(A, CO 2)					
4.	Solve the congruence $5x \equiv 3 \pmod{24}$.	(U, CO 2)					
5.	True or false : If $\ a \ non \ zero \ ideal \ a \ is \ prime, \ then \ N(a) \ is \ a \ prime.$ Justify.	(A, CO 5)					
6.	Prove that the <i>m</i> residue classes $\hat{1}, \hat{2},, \hat{m}$ are disjoint and their union is the set of all integers.	(A, CO 2)					
7.	Prove that $\sum_{n \le x} \mu(n) \left[\frac{x}{n} \right] = 1$ for $x \ge 1$	(A, CO 1)					
8.	Prove that Möbius function is not completely multiplicative but multiplicative.	(A, CO 1)					
9.	Suppose that $h = f * g$ and let $H(x) = \sum_{n \le x} h(n)$, $F(x) = \sum_{n \le x} f(n)$ and $G(x) = \sum_{n \le x} g(n)$. Prove that $H(x) = \sum_{n \le x} f(n)G(x/n) = \sum_{n \le x} g(n)F(x/n)$.	(An, CO 1)					
10.	If $a \neq 0$ is an ideal of O with $\ N(a)$ is prime , prove that $a N(a)$	(A, CO 5) (1 x 8 = 8)					
	PART B						
	Answer any 6 questions	Weights: 2					
11.	Derive formula for the divisor sum of Euler totient function.	(A, CO 1)					
12.	Prove that O of $Q\left(\sqrt{-5} ight)$ is not a unique factorization domain.	(An, CO 3)					
13.	Prove that for $n \ge 1$, $\frac{1}{6}n\log n < p_n < 12\left(n\log n + n\log\left(\frac{12}{e}\right)\right)$ where p_n is	(A, CO 2)					
	the <i>nth</i> prime.						
14.	Let a be an ideal of O. Prove that N(a) = $\left \frac{\Delta[\alpha_1,, \alpha_n]}{\Delta} \right $, where Δ is the	(A, CO 4)					

discriminant.

•

15. Prove that the following conditions are equivalent for an integral domain D

(A, CO 3)

Max. Weights: 30

- 1. D is noetherian,
- 2. D satisfies the ascending chain condition,

3. *D* satisfies the maximal condition.

16.	If a is a non-zero ideal and $aS \subseteq a$ for any set $S \subseteq K$, then prove that $S \subseteq O$.	(A, CO 5)
17.	Assume $m_1,, m_r$ are relatively prime in pairs. Let $b_1,, b_r$ be arbitrary integers and let $a_1,, a_r$ satisfy $(a_k, m_k) = 1$ for $k = 1, 2,, r$. Prove that the linear system of congruences $a_1x \equiv b_1(\mod m_1),, a_rx \equiv b_r(\mod m_r)$ has exactly one solution modulo $m_1m_2m_r$.	(A, CO 2)
18.	Prove that two lattice points (a, b) and (m, n) are mutually visible if, and only if, $a - m$ and $b - n$ are relatively prime.	(An, CO 2)
		(2 x 6 = 12)
	PART C	(2 X 6 = 12)
	PART C Answer any 2 questions	(2 x 6 = 12) Weights: 5
19.		
19. 20.	Answer any 2 questions Prove that every non-zero ideal of O can be written as a product of prime	Weights: 5

1.
$$\lim_{x \to \infty} \frac{\pi(x)\log x}{x} = 1.$$

2.
$$\lim_{x \to \infty} \frac{\vartheta(x)}{x} = 1.$$

3.
$$\lim_{x \to \infty} \frac{\psi(x)}{x} = 1.$$

(A, CO 2)

22.

Prove that if
$$x \ge 1$$
 and $\alpha > 0$, $\alpha \ne 1 \sum_{n \le x} \sigma_{\alpha}(n) = \frac{\zeta(\alpha + 1)}{\alpha + 1} x^{\alpha + 1} + O(x^{\beta})$ (An, CO 1) where $\beta = \max\{1, \alpha\}$.

$$(5 \times 2 = 10)$$

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1		U	7, 8, 9, 11, 22	10
CO 2		А	3, 4, 6, 13, 17, 18, 21	14
CO 3		А	12, 15, 20	9
CO 4		An	1, 2, 14, 19	9
CO 5		An	5, 10, 16	4

OBE: Questions to Course Outcome Mapping

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;