\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024 SEMESTER 4 - MATHEMATICS

COURSE : 19U4CRMAT4 - ANALYTIC GEOMETRY NUMERICAL METHODS AND NUMBER THEORY
(For Regular - 2022 Admission and Improvement / Supplementary - 2021/2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Find the polar equation of the circle which passes through the pole and two points whose polar coordinates are $(d, 0)$ and $\left(2 d, \frac{\pi}{3}\right)$. Find also the radius of the circle.
2. Give an example of algebraic equation.
3. Find the equation of the directrix of the conic $r \sin ^{2} \frac{\theta}{2}=1$.
4. Find the polar equation of the line passing through $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$.
5. Use the NewtonRaphson method to obtain a root, correct to two decimal places, of the equation $\cot x=-x$.
6. Find the angle between the lines $x^{2}+x y-6 y^{2}=0$.
7. Show that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$.
8. Find the nature of the conic $\frac{5}{r}=2-2 \cos \theta$.
9. Define the rank of a second order curve.
10. Show that if p is a prime and $k>0$, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.
11. State the converse of Fermat's theorem.
12. Find the equation of the ellipse which has the point $(-1,1)$ for a focus, the line $4 x-3 y=0$ the corresponding directrix and whose eccentricity is $\frac{5}{6}$.
($2 \times 10=20$)

PART B

Answer any 5 (5 marks each)

13. Use the method of false position to find a real root, correct to three decimal places, of the equation $x^{3}-x-4=0$.
14. The equation $2 x=\log _{10} x+7$ has a root between 3 and 4 . Find this root, correct to three decimal places, by regula-falsi method.
15. For given integers a, b, c, prove that $\operatorname{gcd}(a, b c)=1$ if and only if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$.
16. Find the equation of the hyperbola whose asymptotes are $x+2 y+3=0$ and $3 x+4 y+5=0$ and which passes through the point $(1,-1)$.
17. Find the asymptotes of $2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0$.
18. Show that the locus of a point which moves such that the difference of its distances from two fixed points is a constant, is a hyperbola.
19. Find the centre, foci and lengths of axes of the hyperbola $x^{2}-2 y^{2}-2 x+8 y-1=0$.
20. Let $n=p_{1} p_{2} \ldots p_{r}$ be a composite square-free integer, where the p_{i} are distinct primes. If $p_{i}-1 \mid n-1$ for $i=1,2, \ldots, r$, then prove that n is an absolute pseudoprime.
($5 \times 5=25$)

PART C

Answer any 3 (10 marks each)
21. Using NewtonRaphson method, derive a formula for finding the $k^{\text {th }}$ root of a positive number N and hence compute the value of $25^{1 / 4}$.
22. Derive a formula to evaluate $\phi(n)$. Hence prove that if the integer n has r distinct odd prime factors, then $2^{r} \mid \phi(n)$.
23. Show that for the conic $\frac{l}{r}=1+e \cos \theta$, the equation to the directrix corresponding to the focus other than the pole is $\frac{l}{r}=-\frac{1-e^{2}}{1+e^{2}} e \cos \theta$.
24. Show that the equation $7 x^{2}-48 x y-7 y^{2}-20 x+140 y+300=0$ represents a hyperbola and find its canonical equation.
($10 \times 3=30$)

