\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024
 SEMESTER 6 - MATHEMATICS

COURSE : 19U6CRMAT09 - REAL ANALYSIS - 2
(For Regular 2021 Admission and Supplementary 2020/2019 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Show that the series $\sum r^{n} \cos n \theta, 0<r<1$, converges uniformly for all real values of θ.
2. Evaluate $\int_{0}^{1} x^{4}(1-x)^{2} d x$.
3. Define a partition of $[a, b]$.
4. Show that the series $\sum r^{n} \sin n \theta, 0<r<1$, converges uniformly for all real values of θ.
5. Show that a function which is uniformly continuous on an interval is continuous on that interval.
6. Define the improper integral $\int_{a}^{\infty} f d x$, where $x \geq a$.
7. Discuss the discontinuity of the function defined by $f(x)=x-[x], \forall x \geq 0$, at $x=3$
8. State the Darboux's condition of Riemann integrability of a bounded function f on $[a, b]$.
9. Define pointwise convergence of a sequence of functions $\left\{f_{n}\right\}$.
10. Show that the function defined by $f(x)= \begin{cases}x \sin 1 / x & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{cases}$ is continuous at $x=0$.
11. Show that $\Gamma(1)=1$
12. Prove that for any two partitions P_{1} and P_{2} of $[a, b]$ and for a bounded function f, $L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right)$.

PART B

Answer any 5 (5 marks each)

13. State and prove the fixed point theorem.
14. Show that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ is not uniformly convergent on any interval containing zero.
15. State and prove the generalised first mean value theorem for integrals.
16.

Show that the function f defined by $f(x)= \begin{cases}0 & \text { when } x \text { is rational } \\ 1 & \text { when } x \text { is irrational }\end{cases}$ is not Riemann integrable on any interval.
17. Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$.
18. The function f is defined on \mathbb{R} by
$f(x)=\left\{\begin{array}{ll}-x^{2} & \text { when } x \leq 0 \\ 5 x-4 & \text { when } 0<x \leq 1 \\ 4 x^{2}-3 x & \text { when } 1<x<2 \\ 3 x+4 & \text { when } x \geq 2\end{array}\right.$.
Examine f for continuity at $x=0,1,2$. Also discuss the kind of discontinuity, if any.
19. Test for convergence of the improper integral $\int_{1}^{2} \frac{x d x}{\sqrt{x-1}}$.
20. Show that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=\tan ^{-1} n x, x \geq 0$ is uniformly convergent on any interval $[a, b], a>0$ but is only pointwise convergent on $[0, b]$.

PART C

Answer any 3 (10 marks each)

21. Let $\left\{f_{n}\right\}$ be a sequence of functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x), x \in[a, b]$ and let $M_{n}=\operatorname{Sup}\left|f_{n}(x)-f(x)\right|$ for $x \in[a, b]$. Prove that $f_{n} \rightarrow f$ uniformly on $[a, b]$ if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
22. \quad Suppose f is bounded and integrable on $[a, b]$ and F is defined by
$F(x)=\int_{a}^{x} f(t) d t, a \leq x \leq b$. Show that F is continuous on $[a, b]$. Further show that if f is continuous at a point c of $[a, b]$, then F is differentiable at c and $F^{\prime}(c)=f(c)$.
23. Evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}$.
24. Show that a function which is continuous on a closed interval is also uniformly continuous on that interval.
$(10 \times 3=30)$
