24U604

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024

SEMESTER 6 - MATHEMATICS

COURSE : 19U6CRMAT09 - REAL ANALYSIS - 2

(For Regular 2021 Admission and Supplementary 2020/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Show that the series $\sum r^n \cos n\theta$, 0 < r < 1, converges uniformly for all real values of θ .
- 2. Evaluate $\int_0^1 x^4 (1-x)^2 \, dx$.
- 3. Define a partition of [a, b].
- 4. Show that the series $\sum r^n \sin n\theta$, 0 < r < 1, converges uniformly for all real values of θ .
- 5. Show that a function which is uniformly continuous on an interval is continuous on that interval.
- 6. Define the improper integral $\int_a^\infty f\,dx$, where $x\ge a.$
- 7. Discuss the discontinuity of the function defined by $f(x)=x-[x],\,orall\,x\geq 0$, at x=3
- 8. State the Darboux's condition of Riemann integrability of a bounded function f on [a, b].
- 9. Define pointwise convergence of a sequence of functions $\{f_n\}$.
- 10. Show that the function defined by $f(x) = \begin{cases} x \sin 1/x & when \ x \neq 0 \\ 0 & when \ x = 0 \end{cases}$

is continuous at x = 0.

- 11. Show that $\Gamma(1) = 1$
- 12. Prove that for any two partitions P_1 and P_2 of [a, b] and for a bounded function f, $L(P_1, f) \leq U(P_2, f)$.

 $(2 \times 10 = 20)$

PART B

Answer any 5 (5 marks each)

- 13. State and prove the fixed point theorem.
- ^{14.} Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{nx}{1 + n^2 x^2}$ is not uniformly convergent on any interval containing zero.
- 15. State and prove the generalised first mean value theorem for integrals.
- 16. Show that the function f defined by $f(x) = \begin{cases} 0 & when x \text{ is rational} \\ 1 & when x \text{ is irrational} \end{cases}$ is not Riemann integrable on any interval.
- 17. Evaluate $\int_0^1 \frac{dx}{\sqrt{1-x}}$.

18. The function f is defined on \mathbb{R} by

$$f(x) = egin{cases} -x^2 & when \, x \leq 0 \ 5x-4 & when \, 0 < x \leq 1 \ 4x^2-3x & when \, 1 < x < 2 \ 3x+4 & when \, x \geq 2 \end{cases}.$$

Examine f for continuity at x = 0, 1, 2. Also discuss the kind of discontinuity, if any.

19. Test for convergence of the improper integral
$$\int_{1}^{2} rac{x dx}{\sqrt{x-1}}$$
.

20. Show that the sequence $\{f_n\}$, where $f_n(x) = \tan^{-1} nx$, $x \ge 0$ is uniformly convergent on any interval [a, b], a > 0 but is only pointwise convergent on [0, b].

(5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. Let $\{f_n\}$ be a sequence of functions such that $\lim_{n\to\infty} f_n(x) = f(x), x \in [a,b]$ and let $M_n = Sup|f_n(x) f(x)|$ for $x \in [a,b]$. Prove that $f_n \to f$ uniformly on [a,b] if and only if $M_n \to 0$ as $n \to \infty$.
- 22. Suppose f is bounded and integrable on [a, b] and F is defined by $F(x) = \int_{a}^{x} f(t)dt, a \le x \le b$. Show that F is continuous on [a, b]. Further show that if f is continuous at a point c of [a, b], then F is differentiable at c and F'(c) = f(c).
- 23. Evaluate $\int_{-\infty}^{\infty} rac{dx}{(1+x^2)^2}.$
- 24. Show that a function which is continuous on a closed interval is also uniformly continuous on that interval.

 $(10 \times 3 = 30)$