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PART A
Answer any 10 (2 marks each)

1. Show that the series , converges uniformly for all real values of . 

2.
Evaluate .

3. Define a par��on of .

4. Show that the series , converges uniformly for all real values of .

5. Show that a func�on which is uniformly con�nuous on an interval is con�nuous on that
interval.

6.
Define the improper integral  , where .

7. Discuss the discon�nuity of the func�on defined by  , at 

8. State the Darboux's condi�on of Riemann integrability of a bounded func�on  on .

9. Define pointwise convergence of a sequence of func�ons .

10.
Show that the func�on defined by  

 is con�nuous at .

11. Show that 

12. Prove that for any two par��ons  and  of  and for a bounded func�on  ,

. 

PART B
Answer any 5 (5 marks each)

13. State and prove the fixed point theorem.

14. Show that the sequence , where  is not uniformly convergent on

any interval containing zero.

15. State and prove the generalised first mean value theorem for integrals. 

16.
Show that the func�on  defined by 

is not Riemann integrable on any interval.

17.
Evaluate .
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(5 x 5 = 25)

(10 x 3 = 30)

18. The func�on  is defined on  by 

.

Examine  for con�nuity at . Also discuss the kind of discon�nuity, if any.

19.

20.

Test for convergence of the improper integral .

Show that the sequence , where ,   is uniformly convergent

on any interval ,  but is only pointwise convergent on .

PART C
Answer any 3 (10 marks each)

21. Let  be a sequence of func�ons such that  and let

 for  . Prove that  uniformly on  if and

only if  as .

22.  Suppose  is bounded and integrable on  and  is defined by

. Show that  is con�nuous on . Further show that if

 is con�nuous at a point  of , then  is differen�able at  and .

23.
Evaluate  .

24. Show that a func�on which is con�nuous on a closed interval is also uniformly con�nuous
on that interval.
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