Reg. No

Name

19P2045

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019 SEMESTER 2 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY

COURSE : 16P2CHET08 / 16P2CPHT08 : THEORETICAL AND COMPUTATIONAL CHEMISTRY

(For Regular – 2018 Admission and Supplementary – 2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (2 marks each)

- 1. Given the following space part of an approximate wavefunction for Li⁺ ion: $1/\sqrt{2}$ [1s(1)2p₁(2) + 2p₁(1)1s(2)], write a physically possible spin part for this wavefunction.
- 2. State the variation theorem. Mention its significance.
- 3. Explain how the Roothaan equations arise in the Hartree–Fock method. What additional approximations do they represent?
- 4. Construct the molecular orbital energy level diagram of LiH molecule.
- 5. Determine the term symbols for He₂ and He $_2^+$.
- 6. Calculate the π -bond order of ethylene in the first excited state.
- 7. What are the allowable spin functions for a two-electron system?
- 8. How does the software realize that the job of optimization of molecule is complete?
- 9. What is exchange correlation functional?
- 10. What is a saddle point? Explain its significance.
- 11. What is a protein structure file format?
- 12. Describe the torsional terms in a molecule.
- 13. Explain the notation MP2/6-311G(d,p)//HF/STO-3G

 $(2 \times 10 = 20)$

Section B Answer any 5 (5 marks each)

- 14. Explain the independent electron model.
- 15. Explain the variation treatment for the ground state of helium atom.
- 16. Write a note on HFSCF theory.
- 17. Using HMO theory, determine the energies and wave functions of the pi electron system in allyl group.
- 18. Show that $c_1 = c_2$ in the ground state valence bond wave function of hydrogen molecule, given by $\psi_{VB} = c_1 \psi_1 + c_2 \psi_2$.

- 19. Prove that the three ${\rm sp}^2$ hybrid orbitals are directed at angles of 120° with respect to one another.
- 20. Distinguish between ab initio methods and semiempirical methods
- 21. What is double zeta and triple zeta basis sets? Which one is better and why?

(5 x 5 = 25)

Section C

Answer any 2 (15 marks each)

- 22. Explain perturbation method. How is perturbation method applied to evaluate the ground state energy of He atom.
- 23. Apply HMO theory to determine the wavefunctions and corresponding energies of π MOs of benzene. Sketch the MOs.
- 24. Explain the basic principles of computational chemistry based on Density Functional Theory (DFT)
- 25. Explain MM-MD simulation protocol. Write a flow chart for the molecular dynamics simulation of glycine in water. Analyse the results of the simulation.

(15 x 2 = 30)