Reg. No

Name

24P4045

Max. Weights: 30

M. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2024

SEMESTER 4 - MATHEMATICS

COURSE : 21P4MATTEL20 -THEORY OF WAVELETS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

PART A						
	Answer any 8 questions	Weight: 1				
1.	For $Z\in l^2(Z_n)$, define $T(Z)\in (Z_N)$ by $(T(z))(n)=z(n-1)$ for all ' n '. Prove that T is translation invariant.	(R, CO 1)				
2.	If $z,w\in l'(z)$, prove that $\sum\limits_{n\in z} z(m-n)w(n)$ converges absolutely for each	(A, CO 3)				
3.	$m \in z$. Show that if $\sum w(n)$ converges absolutely then $\lim w(n) = 0$ and					
э.	Show that if $\sum\limits_{n\in Z} w(n)$ converges absolutely, then $\lim\limits_{n o\infty} w(n)=0$ and	(An, CO 3)				
	$\lim_{n o\infty}w(-n)=0.$	())				
4.	Determine the total size of the output vector of the analysis phase of the P th stage filter bank.	(An, CO 2)				
5.	Define Convolution operator.	(R, CO 1)				
6.	Suppose $z\in l^2(Z).$ Then define $ ilde{z}(n)$ and $z^*(n)$ for all $n\in Z.$	(U, CO 4)				
7.	If $\psi_{-j,k} = R_{2^jk} f_i$ and $\phi_{-j,k} = R_{2^jk} g_j$, prove that $\hat{\phi}_{-j,k}(m) = e^{-2\pi i 2^j k m/N} \hat{\psi}_{-j,0}(m)$ and $\hat{\phi}_{-j,k}(m) = e^{-2\pi i 2^j k m/N} \hat{\phi}_{-j,0}(m)$.	(E, CO 2)				
8.	Suppose $z,w\in l^2(Z).$ Prove that $D(z)st w=D(zst U(w)).$	(A, CO 4)				
9.	If $z=(1,2,3,i)\in l^2(Z_4)$, find $(R_2z)(3)$ and $(R_2z)(100).$	(An, CO 1)				
10.	Suppose $M\in Z$ and $z\in C.$ When we say a sequence $\{z_n\}_{n=M}^\infty$ of complex numbers converges to z? When we say this sequence is a Cauchy Sequence?	(E, CO 3)				
	numbers converges to 2: when we say this sequence is a cadeny sequence:	(1 x 8 = 8)				
	PART B					
	Answer any 6 questions	Weights: 2				
11.	Suppose $\theta_0 \in (-\pi, \pi)$ and $\alpha > 0$ is sufficiently small that $-\pi < \theta_0 - \alpha < \theta_0 + \alpha < \pi$. Define $I = (\theta_0 - \alpha, \theta_0 + \alpha)$ and $J=(\theta_0 - \frac{\alpha}{2}, \theta_0 + \frac{\alpha}{2})$. Then prove that there exists a $\delta > 0$ and a sequence of real valued trigonometric polynomials $\{p_n(\theta)\}_{n=1}^{\infty}$ such that (i) $p_n(\theta) \ge 1$ for $\theta \in I$. (ii) $p_n(\theta) \ge (1+\delta)^n$ for $\theta \in J$. (iii) $ p_n(\theta) \le 1$ for $\theta \in [-\pi, \pi) - I$.	(U)				
12.	Suppose N is divisible by 2^p . Suppose $u_1, v_1, \in l^2(Z_N)$ are such that the system matrix A(n) of u_1 and v_1 is unitary for all n. Define $u_l(n) = \sum_{k=0}^{2^{l-1}-1} u_1(n + \frac{kN}{2^{l-1}})$ and $v_l(n) = \sum_{k=0}^{2^{l-1}-1} v_1(n + \frac{kN}{2^{l-1}})$ for $l = 2, 3, \ldots, p$. If we define $f_1 = v_1$ and $g_1 = u_1$ and for $l = 2, 3, \ldots, p$ if	(An, CO 2)				
13.	we define $f_l = g_{l-1} * U^{l-1}(v_l)$ and $g_l = g_{l-1} * U^{l-1}(u_l)$, Then prove that $U_1, V_1, U_2, V_2, U_p, V_p$ is a P th stage wavelet filter sequence. (a) If N=2M, when M is a positive integer, then define z^* for any $z \in l^2(Z_N)$ (b) Prove that $(z^*)^{\wedge}(n) = \hat{z}(n+M)$ for all n.	(A, CO 1)				

14.	Suppose $z\in l^2(Z)$ and $w\in l^1(Z).$ Then prove that $zst w\in l^2(Z)$ and $ zst w \leq w , z .$	(An, CO 4)
15.	Prove that $l^2(z)$ is a vector space.	(U, CO 3)
16.	Let $b\in l^2(Z_N)$ and $T_b:l^2(Z_N) o l^2(Z_N)$ be defined by $T_b(z)=b*z.$ Then prove that T_b is translation invariant linear transformation.	(A, CO 1)
17.	Suppose N is divisible by 2^l .	
	Define $u_l \in l^2(Z^{l-1}_{N/2})$ by $u_l(n) = \sum\limits_{k=0}^{2^{n-1}-1} u_1(n+rac{kN}{2^{l-1}}).$ Then prove that	(An, CO 2)
	$\hat{u_l}(m) = \hat{u_1}(2^{l-1}m).$	
18.	Describe the first stage real shannon basis for $l^2(Z_N)$ if N is divisible by 4.	(U, CO 1) (2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	Suppose l is a positive integer, $g_{l-1} \in l^2(Z)$ and $\{R_{2^{l-1}k}g_{l-1}\}_{k\in Z}$ is orthonormal in $l^2(Z)$. Suppose that $u, v \in l^1(Z)$ and the system matrix $A(\theta)$ of u and v is unitary for all θ . Define $f_l = g_{l-1} * U^{l-1}(v)$ and $g_l = g_{l-1} * U^{l-1}(u)$. Then prove that $\{R_{2^lk}f_l\}_{k\in Z} \bigcup \{R_{2^lk}g_l\}_{k\in Z}$ is orthonormal.	(U, CO 4)
20.	(a) Describe first stage shannon basis for $l^2(Z_N)$ if N is divisible by 4. (b) Deduce the first stage real shannon basis for $l^2(Z_N).$	(U, CO 1)
21.	Suppose $T: L^2([-\pi,\pi)) o L^2([-\pi,\pi))$ is a bounded translation invariant linear transformation . Then prove that $T(e^{im\theta}) = \lambda_m e^{im\theta}$ for some $\lambda_m \in C$ and it is true for all $m \in Z$.	(An, CO 3)
22.	Suppose N is divisible by $2^l, g_{l-1} \in l^2(Z_N)$ and the set $\{R_{2^{l-1}k}g_{l-1}\}_{k=0}^{\frac{N}{2^{l-1}-1}}$ is orthonormal and has $\frac{N}{2^{l-1}}$ elements. Suppose $u_l, v_l \in l^2(Z_{N/2}^{l-1})$ and the system matrix $A_l(n)$ is unitary for all $n = 0, 1, 2, \dots, (N/2^l) - 1$. Define $f_l = g_{l-1} * U^{l-1}(v_l)$ and $g_l = g_{l-1}(*)U^{l-1}(u_l)$. With the usual notations prove that $V_{-l} \oplus W_{-l} = V_{-l+1}$	(An, CO 2)
		$(E_{1}, 2) = 10$

(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Define first stage and pth stage wavelet basis for I 2[ZN], Fourier transform including discrete case ,complete orthonormal system , first stage wavelet system and homogeneous wavelet system for I2[Z]	U	1, 5, 9, 13, 16, 18, 20	14
CO 2	Explain the filter bank diagram and its use in the construction of the output of the analysis phase of the filter bank	U	4, 7, 12, 17, 22	11
CO 3	Apply theory of wavelets in the frequency analysis of a video or audio signal.	U	2, 3, 10, 15, 21	10
CO 4	Develop wavelet bases for I 2 [ZN] and I2 [Z],both first stage and pth stage	U	6, 8, 14, 19	9

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;